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Abstract

In tropical regions millions of people still live at risk of malaria infection. Indeed the emergence of resistance to chloroquine
and other drugs in use in these areas reinforces the need to implement alternative prophylactic strategies. Genistein is a
naturally occurring compound that is widely used as a food supplment and is thought to be effective in countering several
pathologies. Results presented here show that genistein inhibits liver infection by the Plasmodium parasite, the causative
agent of malaria. In vitro, genistein decreased the infection rates of both mouse and human hepatoma cells by inhibiting the
early stages of the parasite’s intracellular development. Oral or intraperitoneal administration of genistein decreased the
liver parasite load of P. berghei-infected mice. Moreover, mice fed on a genistein-supplemented diet showed a significant
reduction in Plasmodium liver infection as well as a reduced blood parasitemia and partial protection from severe disease.
Since genistein is a safe, low-cost, natural compound that can be used permanently in a diet, we propose its use as a
prophylactic agent against malaria for endemic populations and long-time travelers.
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Introduction

In recent years, Plasmodium falciparum, the most virulent malaria

parasite species that infects humans, has developed increasing

resistance to anti-malarial drugs in use. The development of new

drugs has been slow and insufficient to overcome the problem of

drug resistance. Moreover, the most affected populations in

developing countries cannot afford most available therapies. In

this context, not only toxicity but also cost effectiveness and

distribution are important factors that need to be considered when

developing novel intervention approaches against malaria.

The hepatic stage is the first step of any natural malaria

infection and a prerequisite for the subsequent blood stage, when

disease-associated pathology occurs. The obligatory, yet silent,

nature of liver stage infection makes it an attractive target for

prophylactic anti-malarial intervention strategies [1]. Moreover, a

decrease of the parasite load in the liver has been shown to be

associated with a decrease in the severity of the disease [2,3].

Clinical manifestations of malaria cover a wide range of

symptoms. Although most infected individuals will only have a

relatively benign febrile illness, 1–3 million deaths per year occur

from severe malaria, which includes several syndromes such as

severe anaemia, acute respiratory distress or cerebral malaria.

Genistein, a major component of soybeans, is a broad tyrosine

kinase inhibitor [4] and has been ingested by several Asian

populations for centuries without any obvious adverse effects.

Several clinical trials have successfully addressed the usefulness of

genistein as a prophylactic agent for certain types of cancer and

chronic diseases [5]. Moreover, genistein has been shown to

inhibit in vitro the intraerythrocytic development of P. falciparum

and P. chabaudi, an effect that has been attributed to its action as a

tyrosine kinase inhibitor [6–8]. We have previously shown that, in

the liver, signaling through the host tyrosine kinase receptor MET

facilitates sporozoite infection [9]. Thus, we hypothesized that

genistein might influence hepatic infection by Plasmodium and

sought to investigate its potential as a prophylactic anti-malarial.

Here, we demonstrate that genistein affects P. berghei ANKA

sporozoite development within hepatocytes and thereby reduces

hepatic infection both in vitro and in vivo. Importantly, we show that

genistein given as a food supplement to mice affects the full course

of a malaria infection, including the development of pathology, by

reducing the extent of liver infection by Plasmodium.
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Results

Genistein Inhibits in vitro Hepatocyte Infection by P.
berghei ANKA Sporozoites

To determine whether genistein has any effect on the hepatic

infection by Plasmodium sporozoites, cultures of Hepa1-6 cells, a

mouse hepatoma cell line, were infected with P. berghei ANKA

sporozoites in the presence of different doses of genistein. Twenty-

four hours after sporozoite addition, the number of infected cells

was determined by counting the total number of intracellular

developing parasites (exo-erythrocytic forms, EEFs). The results

show that genistein significantly inhibits Hepa1-6 cell infection in a

dose-dependent manner (p,0.05) (Figure 1A). We also observed

that genistein decreases infection by Plasmodium sporozoites in 2

different human hepatoma cell lines, HepG2 or Huh7 cells

(7468% and 6864% reduction in infection, respectively;

p,0.01), to a similar extent as that observed in the murine cell

line (Figure 1B, C). Genistein treatment does not lead to any signs

of loss of cell viability or reduced proliferation. Indeed, HepG2 or

Huh7 cells treated with genistein show constant number of cells as

well as constant proportion of cell death (Figure 1D, E). Taxol

treated Huh7 cells were used as positive control. To test the

possibility that genistein has a direct effect on Plasmodium

sporozoites, preventing them from invading the cells, P. berghei

ANKA sporozoites were incubated with 100 mM genistein for

30 min and, after several washes to remove genistein, added to

HepG2 cells. EEF number was assessed 24 hours later and no

significant difference was observed between the infection levels of

cells infected with sporozoites pre-treated with genistein and those

infected with vehicle-treated sporozoites (Figure 1F). Interestingly,

pre-treatment of cells for 2 h prior to sporozoite addition led to a

small but significant reduction of infection, which again strongly

suggests the effect of genistein in infection is due to an effect on the

host cell and not on the parasite (p,0.05) (Figure 2G). Altogether

the data shows that genistein strongly affects host cell infection by

P. berghei ANKA without having a direct action on sporozoites.

Genistein Impairs Early Plasmodium Sporozoite
Development Inside Host Cells

After invasion of a hepatocyte, each parasite replicates to

thousands of merozoites that are subsequently released into the

blood stream. As parasites develop and replicate inside hepato-

cytes, the size of EEFs increases. We noticed a striking difference

between the sizes of EEFs in control versus genistein-treated cells

(Figure 2A). The quantification of EEF areas in both groups of

cells showed that EEFs are significantly smaller in genistein-treated

cells than in untreated controls (Figure 2B), suggesting that

genistein affects the development of Plasmodium sporozoites inside

host cells.

Hepatocyte infection by Plasmodium may be divided into three

consecutive steps: cell traversal, productive hepatocyte invasion

and intracellular development. In our in vitro infection model, over

95% of the infective sporozoites have completed the migration and

invasion steps at 2 hours after addition to the cells [10]. Later,

after 6 hours, sporozoites have changed their morphology and

have acquired a round form and after 12 hours their size has

started to increase. In order to identify the time-scale of genistein

action, the drug was added to HepG2 cell cultures at different

times after addition of P. berghei ANKA sporozoites. Genistein

significantly reduced infection to approximately the same extent

regardless of whether it was added to the cells prior to infection or

up to 6 hours after sporozoite addition (p,0.05) (Figure 2C). This

finding suggests that genistein reduces infection not by interfering

with sporozoite invasion but rather by interfering with the

Figure 1. Genistein inhibits in vitro hepatoma cell infection by
Plasmodium sporozoites. Cultured Hepa1-6 cells were incubated with
increasing doses of genistein (A) and cultured HepG2 and Huh7 cells
were incubated with 25 mM of genistein (B) and (C). As control, cells
were treated with equivalent volumes of DMSO as in the genistein
treated groups. The number of infected cells was determined 24 hours
after infection with 46104 P. berghei ANKA sporozoites and is shown as
the total number of EEFs in each coverslip. Each condition was assayed
in duplicate in (A) or triplicate in (B) and (C). w p,0.05, ww p,0.01
(TTest relative to control group). Bar plot shows one representative of 3
independent experiments, error bars represent s.d. of mean number of
EEFs in each condition. (D) Cultured HepG2 cells were incubated with
different concentrations of genistein, or DMSO (control). After 24 hours
the number of adherent cells in 10 microscope fields representing
approximately 20% of the total area was assessed at 4006 magnifica-
tion. Each condition was assayed in duplicate. (E) Cultured Huh7 were
incubated with Genstein or Taxol, along with their respective controls
of DMSO, and allowed to grow for 24 hours. After this time both
adherent and non-adherent cells were collected and incubated with
propidium iodide. Percentage of death cells was quantified by flow
cytometry. Bar plot shows one representative of 3 independent
experiments, error bars represent s.d. of mean cell death percentage
in each condition (n = 3). ww p,0.01 (TTest relative to control group).
(F) P. berghei ANKA sporozoites were incubated with 100 mM genistein
or DMSO for 30 min. Sporozoites were washed with PBS to remove
genistein and used to infect cultured HepG2 cells. Infection was
determined 24 hours post-infection by counting the total number of
EEFs in each coverslip. Each experimental condition was assayed in
triplicate. Bar plot shows one representative of 3 independent
experiments. Error bars represent s.d. of mean number of EEFs in each
condition (n = 3). (G) Huh7 cells were incubated with 25 mM genistein or
DMSO for 2 h. Cells were then washed with PBS and fresh medium to
remove genistein. P. berghei sporozoites were then added to these
cells. Infection was determined 24 hours post-infection by counting the
total number of EEFs in each coverslip. Each experimental condition
was assayed in triplicate. Bar plot shows one representative of 3
independent experiments. Error bars represent s.d. of mean number of
EEFs in each condition (n = 3).
doi:10.1371/journal.pone.0002732.g001
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development of sporozoites inside host cells. The effect of genistein

was progressively lost when it was added at later time-points

(Figure 2C). Still with the objective of finding genistein’s time of

action we added the drug to HepG2 cell cultures immediately

prior to addition of P. berghei ANKA sporozoites, and then

removed it at different times after infection (Figure 2D). Genistein

reduced infection when it was present during the first 4 hours of

infection. The degree of inhibition increases with exposure time

Figure 2. Genistein suppresses the early development of parasites within hepatocytes. (A) Hepa1-6 cells were incubated with genistein or
DMSO and inoculated with 46104 P. berghei ANKA sporozoites. The two images show EEFs observed 24 hours after infection of control (left) or
genistein-treated cells (right) at a 10006 magnification. Bar = 2.5 mm. (B) Distribution of EEFs according to size. Hepa1-6 cells were treated with
genistein or DMSO (control) immediately prior to inoculation with 46104 P. berghei ANKA sporozoites and the size of 100 EEFs from different
coverslips was determined 24 hours later. The figure shows the frequency of EEFs with sizes between 0 and 40 mm2. # control; N 25 mM genistein.
P = 5.9610225 (TTest relative to the control group). The results are representative of 3 independent experiments. (C) Incubation of cultured HepG2
cells with 25 mM genistein or DMSO (control) at various times after addition of 46104 P. berghei ANKA sporozoites. Infection was determined 24 hours
after sporozoite addition by counting the total number of EEFs per coverslip. The results are expressed as the percentage of EEFs relative to the
average number of EEFs in the control samples, taken as 100%. (D) Incubation of cultured HepG2 cells with 25 mM genistein or DMSO (control) at the
time of addition of 46104 P. berghei ANKA sporozoites and washed at various time-points. Infection was determined 24 hours after sporozoite
addition by counting the total number of EEFs per coverslip. The results are expressed as the percentage of EEFs relative to the average number of
EEFs in the control samples, taken as 100%. w p,0.05, ww p,0.01 www p,0.001 (TTest relative to control group). Bar plots show one
representative of 3 independent experiments, error bars represent s.d. of mean number of EEFs in each condition (n = 3). (E) Flow cytometry analysis
of the invasion rate in genistein-treated and control Huh7 cells at 2 hours after addition of 36104 PbGFP sporozoites. Bar plots show one
representative of 3 independent experiments, error bars represent s.d. of mean percentage of GFP positive cells in each condition (n = 3). (F) Flow
cytometry analysis of genistein-treated and control Huh7 cells at 6, 30 and 44 hours after addition of 36104 PbGFP sporozoites, and of primaquine-
treated and control cells at 44 hours after adition of 36104 PbGFP sporozoites. Red line represents Genistein treated cells and black line represents
control cells. The graphs show one representative dataset of triplicate samples. (G) Quantification of the GFP intensity of PbGFP-infected genistein-
treated (red bars) and non-treated (black bars) cells at the same time points as in E. ww p,0.01 (TTest relative to control group). Bar plots show one
representative of 3 independent experiments, error bars represent s.d. of mean GFP intensity in each condition (n = 3).
doi:10.1371/journal.pone.0002732.g002
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and is most significant when the drug is present during the whole

course of infection (p,0.001) (Figure 2D).

To further examine the effect of genistein in the development of

sporozoites inside host cells, we used a recently described Flow

Activated Cell Sorting (FACS) method [10] where we showed that

EEFs of P. berghei ANKA expressing GFP show GFP intensity

proportional to the EEF developmental stage. Having shown that

genistein-treated cells and their controls were equally invaded by P.

berghei ANKA expressing GFP sporozoites at 2 hours post–infection

(Figure 2E), genistein-treated cells were collected and analyzed by

flow cytometry at 6, 30 and 44 hours, after addition of P. berghei

ANKA expressing GFP sporozoites. Solvent-treated cells infected

with P. berghei ANKA expressing GFP sporozoites, collected and

analyzed at the same times, were used as negative controls. Whereas

the GFP intensity of infected and solvent-treated cells increases

significantly with time as a result of the parasites’ intra-cellular

development, the increase in GFP intensity of genistein-treated cells

is significantly less pronounced (Figure 2F). The quantification of

the GFP intensity of triplicate samples of genistein-treated and

control cells at each of the time-points analyzed shows that in the

first hours after infection both sets of samples show similar GFP

intensities, and the difference between these intensities then

increases with time (p,0.01) (Figure 2G). These results provide

evidence that genistein acts subsequent to cell invasion, by inhibiting

the parasites’ early development inside host cells.

The concentration of genistein required to inhibit infection by

50% (IC50) was determined for P. berghei ANKA infection of Huh7

cells (p,0.05) (Figure 3A), and for P. yoelii infection in Hepa1-6

cells (p,0.05) (Figure 3B). Plasmodium infection of cells treated with

increasing amounts of genistein was measured by quantitative real-

time PCR (qRT-PCR), as this method takes into account both the

number and the development of EEFs, since both contribute to the

total number of parasite copies detected. Genistein inhibited

infection with an IC50 of ,20 and ,30 mM for P. berghei and P.

yoelii infections, respectively. This was performed in parallel to

experiments where primaquine was tested in P. berghei infection of

Huh7 cells. The IC50 value obtained for primaquine in those

conditions was 13 mM (with an R2 value of 0.9658). In addition to

hepatoma cell lines primary mouse hepatocyte cultures were also

used. As observed in the cell lines, genistein reduced the infection

of these cells by P. berghei sporozoites (data not shown). Our

findings demonstrate that genistein impairs the developmental/

replication of the parasite in cultured hepatocytes without affecting

the viability of the host cells.

Genistein Decreases in vivo Mouse Liver Infection by P.
berghei ANKA Sporozoites

To investigate the in vivo relevance of our findings with cultured

hepatocytes we treated mice with genistein by intraperitoneal (i.p.)

administration immediately prior to the intravenous (i.v.) inocula-

tion of Plasmodium sporozoites. Solvent-treated mice were used as

controls. Quantification of parasite load in the livers 40 hours after

P. berghei or P. yoelii sporozoite injection showed that a single i.p.

administration of genistein at a dose of 200 mg/kg reduced

infection (p,0.05) (Figure 4A, B). We then tested the effect of oral

administration of a genistein suspension in water to mice prior to i.v.

injection of P. berghei ANKA sporozoites. Water was administered to

control mice. Administration of a single 200 mg/kg dose of

genistein 6 hours prior to sporozoite inoculation, aiming to increase

genistein levels in the liver at the time of sporozoite development,

resulted in a 64% reduction of liver infection of genistein-treated

mice relative to their control counterparts, measured 40 hours after

infection (p,0.05) (Figure 4C).

The above findings constitute a proof-of-principle that genistein

administered orally may be useful for malaria prophylaxis.

However, prophylactic interventions based on daily drug adminis-

tration are difficult to implement in developing countries, in

particular if the whole population requires treatment. Thus, we

sought to test the effect of genistein administration through diet.

Mice were kept on a 1000 ppm genistein-supplemented diet since

weaning (see methods for details), while control mice were kept on

exactly the same diet but without genistein supplementation. Seven

to 10 weeks old mice were inoculated i.v. with P. berghei ANKA

sporozoites and liver infection was determined 40 hours after

sporozoite injection. The liver parasite load was significantly

Figure 3. Genistein’s 50% Inhibitory Concentration (IC50). (A)
Cultured Huh7 cells were treated with increasing doses of genistein or
DMSO (control), and inoculated with 46104 P. berghei ANKA
sporozoites. Infection was determined 24 hours later by parasite-
specific 18S rRNA qRT PCR, and an IC50 of 20 mM was calculated for
genistein’s inhibition of infection. Black circles represent the mean of P.
berghei ANKA18S rRNA expression in each condition (n = 3). (B) Cultured
Hepa1-6 cells were treated with increasing doses of genistein or DMSO
(control), and inoculated with 3.56104 P. yoelii sporozoites. Infection
was determined 24 hours later by parasite-specific 18S rRNA qRT PCR,
and an IC50 of 30 mM was calculated for genistein’s inhibition of
infection. Black circles represent the mean of P. berghei ANKA18S rRNA
expression in each condition (n = 3).
doi:10.1371/journal.pone.0002732.g003
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reduced in mice kept on the genistein-supplemented diet relative to

the untreated controls (p,0.001) (Figure 4, D and E). This effect

was even more pronounced on the progeny of couples kept on this

genistein-supplemented diet, presumably because those litters were

exposed to genistein supplementation since breastfeeding. More-

over, the degree of infection was inversely correlated to the genistein

levels in the sera of the mice (Figure 4F). These results show that the

genistein levels achieved by a genistein-supplemented diet are

sufficient to decrease the infection of the liver with Plasmodium.

Genistein Decreases Disease Severity Through an Effect
on Liver Stage Infection

By reducing liver infection and, consequently, the number of

merozoites that are generated in the liver, genistein treatment is

likely to reduce the parasite burden in the blood. Thus, we

determined whether the genistein diet had an impact on the blood

stage of infection, which is responsible for disease symptoms. Mice

kept on a genistein diet and controls were inoculated i.v. with P.

berghei ANKA sporozoites and infection was allowed to proceed to

Figure 4. Genistein decreases mouse liver lnfection by P. berghei ANKA sporozoites. (A) Mice treated by intraperitoneal injection of 4 mg
of genistein in a volume of 200mL DMSO, or with DMSO alone (control), were injected intravenously with P. berghei ANKA sporozoites (16104/mouse).
Infection was determined 40 hours later by parasite-specific 18S rRNA qRT PCR (n = 4 mice per group). w p,0.05 (TTest relative to control group). Bar
plots show one representative of 3 independent experiments. Error bars represent s.d. of mean P. berghei ANKA 18S rRNA expression in each
condition (n = 3). (B) Mice treated by intraperitoneal injection of 4 mg of genistein in a volume of 200mL DMSO, or with DMSO alone (control), were
injected intravenously with P. yoelii ANKA sporozoites (16104/mouse). Infection was determined 40 hours later by parasite-specific 18S rRNA qRT PCR
(n = 4 mice per group). w p,0.05 (TTest relative to control group). Bar plots show one representative of 3 independent experiments. Error bars
represent s.d. of mean P. yoelii ANKA 18S rRNA expression in each condition (n = 3). (C) Mice treatment by oral administration of 4 mg of genistein
suspended in 200 mL water or with the same volume of water alone (control), 6 hours prior to intravenous injection of sporozoites (16104/mouse).
Infection was determined 40 hours later by parasite-specific 18S rRNA qRT-PCR. n = 3 mice per group. w p,0.05 (TTest relative to control group). Bar
plots show one representative of 3 independent experiments. Error bars represent s.d. of mean P. berghei ANKA 18S rRNA expression in each
condition (n = 3). (D) Mice kept on a genistein-supplemented diet since breastfeeding or with the same diet without supplementation as a control,
were injected intravenously with P. berghei ANKA sporozoites (16104/mouse). Infection was determined 40 hours later by parasite-specific 18S rRNA
qRT-PCR. n = 14 control group; n = 17 genistein treated group. ¤ individual mouse, red bar represents the group average. P = 0.00007 (TTest relative
to control group). Results are representative of 3 independent experiments. (E) Compiled data of liver infection from 5 independent experiments with
mice fed on genistein-supplemented diet for a minimum of 5 weeks and injected intravenously with P. berghei ANKA sporozoites (16104/mouse).
Infection was determined 40 hours later by parasite-specific 18S rRNA qRT-PCR. Results are expressed as frequency of mice that present a certain
level of infection. Infection is expressed as the percentage of parasite specific 18S rRNA taking the average control (non-supplemented diet) as 100%.
e control diet (n = 60), ¤ 1000 ppm genistein-supplemented diet (n = 69). P = 5.861025 (Wilcoxon rank sum test to control group). (F) Inverse
correlation between genistein levels in the sera and Plasmodium infection in the liver. Mice kept under genistein-supplemented diet since
breastfeeding or with the same diet without supplementation, used as controls, were injected intravenously with P. berghei ANKA sporozoites
(16104/mouse). Infection was determined 40 hours later by parasite-specific 18S rRNA qRT-PCR, sera were collected and genistein levels were
determined for individual mice. Total genistein levels (ng/mL) in the sera are plotted against liver infection of individual mice. Infection is expressed
as the percentage of parasite specific 18S rRNA taking the average control (non-supplemented diet) as 100%. ¤ represent the coordinates for
genistein level (yy) and infection (xx) for individual mice. The red line represents the inverse correlation between the two parameters measured.
doi:10.1371/journal.pone.0002732.g004
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the blood stage. Parasitemia (percentage of infected red blood cells

in peripheral blood) was determined at regular time intervals. In

genistein-fed mice the appearance of blood parasitemia was

significantly reduced as compared to controls (p,0.01 for each

day) (Figure 5A) and the percentage of parasitized red cells,

remained lower throughout the entire course of the infection

(Figure 5B). C57BL/6 mice infected with P. berghei ANKA die

within 6–12 days due to the development of a complex neurological

syndrome consisting of hemi- or paraplegia, head deviation,

tendency to roll–over on stimulation, ataxia and convulsions. Given

its similarities to human CM, this neurological syndrome is referred

to as experimental cerebral malaria (ECM). This model has been

used for some time by several different groups around the world. We

have previously used this model and have observed that the mice

present blood-brain-barrier disruption as soon as symptoms arise

[11]. Importantly, more than half of the mice fed on the genistein-

supplemented diet were protected from developing ECM. At

25 days after infection, the survival of mice fed on the genistein-

supplemented diet and that of mice fed on a control diet without

genistein supplementation was 56% and 18%, respectively

(p,0.001) (Figure 5C). The reduction in blood infection could be

due to the observed effect on liver infection but also to a direct effect

of genistein on the blood stages. To test the latter possibility, mice

fed on a genistein-supplemented diet were infected with P. berghei

ANKA-infected red blood cells (iRBC) and their parasitemias were

compared to those of untreated, infected mice. There was no

significant difference between the development of parasitemia in

both groups of mice (Figure 5D). These results show that, by

affecting the liver stage of infection, genistein reduces the parasite

load in the blood and the severity of the disease.

Figure 5. Genistein partially protects from cerebral malaria. (A) Mice fed on a genistein-supplemented or control diet since breastfeeding
were injected intravenously with P. berghei ANKA sporozoites (16104/mouse) and maintained for the analysis of blood infection. Peripheral blood
parasitemia was determined, at different time points after infection, by counting the number of infected red blood cells in Giemsa stained thin blood
films. ¤ control diet; e 1000 ppm genistein-supplemented diet, n = 3 mice per group. w p,0.005 (TTest relative to control group). The results are
representative of 3 independent experiments with a total of 15 control mice and 19 genistein-treated mice. (B) Same as in A between day 2 and day 8
after intravenous injection of P. berghei ANKA sporozoites by counting the number of infected red blood cells in Giemsa stained thin blood films. ¤
control diet; e 1000ppm genistein-supplemented diet, n = 3 mice per group. (C) Cumulative survival of mice fed on a genistein-supplemented or
control diet since breastfeeding when injected intravenously with P. berghei ANKA sporozoites (16104/mouse). Fifty-six percent of the mice fed on
the genistein-supplementd diet and infected with P. berghei ANKA sporozoites are protected from developing cerebral malaria when compared with
twenty percent of mice fed on the control diet. ¤ control diet, n = 15; e 1000 ppm genistein supplemented diet, n = 16. The gray area represents the
time window for developing cerebral malaria in this model. P = 0.067 (Log-Rank Test). (D) Mice fed on a genistein-supplemented or control diet since
breastfeeding were infected by intraperitoneal injection of 16106 P. berghei ANKA iRBC. Peripheral blood parasitemia was determined throughout
infection by counting the number of infected red blood cells in Giemsa stained thin blood films. Parasitemia indicates the percentage of iRBC in a
given number of total red blood cells. ¤ control diet, n = 6; e 1000 ppm genistein-supplemented diet, n = 7. Results are representative of 2
independent experiments with a total of 11 control mice and 12 genistein-treated mice.
doi:10.1371/journal.pone.0002732.g005
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Genistein Inhibits Sporozoite Induced Met
Phosphorylation

The rationale to test the effect of genistein, a tyrosine kinase

inhibitor, in infection was that signaling trough the tyrosine kinase

receptor Met might favor parasite development in hepatocytes. To

determine whether genistein inhibited parasite-induced Met

phosphorylation genistein or DMSO was added to cultured

Huh7 cells and the cultures were inoculated with 36104 P. berghei

ANKA sporozoites. Four hours later total protein extracts were

analysed with anti-phospho c-met (Tyr1234/1235) and MET

antibodies. As shown in Figure 6, sporozoite infection induced Met

phosphorylation and this was inhibited by genistein.

Discussion

Prophylaxis against malaria remains a major concern in regions

where the disease is endemic. Existing regimens for malaria

prophylaxis are suitable for short time travelers but not for

populations living in endemic areas. An alternative to most current

strategies to combat malaria is to target and modulate host

components known to be involved in the establishment of infection

by the parasite. At first sight this approach appears to be

counterintuitive. Indeed, an important requirement of traditional

anti-microbial chemotherapy is not to interfere with functions of the

host. However, targeting of host discrete components that the

parasite seems to modulate has the advantage that drug resistance

cannot result from direct alterations of the drug target [12].

Quinolines and artemisinins are exceptional amongst anti-microbial

drugs in that they target heme, a component of the host [13].

Resistance to quinolines developed very slowly as it required the

selection of variants that affect drug transport. Resistance to

artemisinins has not yet developed in the field, although some

studies indicate that the parasite may acquire resistance to this drug

[12,14]. Resistance is even less likely to occur if the targeted host

component remains outside the pathogen [15].

In the present study, we show that the tyrosine kinase inhibitor

genistein inhibits sporozoite development, in the liver in vitro as well as

in vivo. The reduction of liver infection results in a reduction of the

parasite load in the subsequent blood stage of the infection.

Decreasing the parasite load in the liver has been shown to reduce

the severity of the disease in the subsequent blood stage of the

infection [2,3]. Here, we show that genistein reduces the risk of

development of severe disease during the later blood stages by

reducing the parasite load in the liver. Our data shows that, in the

amount included in the supplemented diet, genistein does not affect

blood parasitemia directly, which does not imply that, at higher

concentrations, genistein does not have a direct effect on malaria

blood stages, as in fact previously shown in vitro [6–8]. If the results

described here, using malaria mouse models, can be reproduced in

humans, genistein has the potential to decrease malaria morbidity

and mortality in endemic areas. Epidemiological studies show that

after the initial period in which children are susceptible to severe

malaria, there is a sequential development of three types of protective

immunity: first, immunity that reduces the incidence of life-

threatening disease; second, immunity that reduces the incidence of

symptomatic infection; and only then, third, immunity that reduces

parasitization [16]. Natural nonsterilizing immunity that develops in

people in sub-Saharan Africa occurs by constant exposure to the

parasites [17]. Thus, the fact that genistein does not totally block

infection might turn out to be an advantage of the strategy of

prophylaxis that we envisage. In endemic areas, genistein may reduce

the incidence of severe malaria by decreasing liver infection and, at

the same time, allow the establishment of natural immunity.

In our previous work we have shown that sporozoite-induced Met

phosphorylation facilitated the development of the parasite in the

liver [9]. Here we show that the tyrosine kinase inhibitor genistein

inhibits sporozoite induced Met phosphorylation. It is conceivable

that this inhibition of Met activation is at least partly responsible for

the inhibition of parasite development by genistein. However,

additional or even alternative mechanisms of action by genistein

cannot be excluded at the present time. Recent results from our

laboratory have implicated several other kinases, including at least

one tyrosine kinase, in the liver stage of Plasmodium infection

(Prudêncio et al., unpublished results). Thus, genistein may reduce

infection by inhibiting more than one tyrosine kinase. Genistein is

also known to inhibit a variety of other enzymes such as thyroid

peroxidases [18], and topoisomerases [19,20]. Moreover genistein

interacts with P1-purinergic (adenosine) receptor in thyroid cells

[21] as well as with several members of the nuclear receptor family

such as estrogen receptors and peroxisome proliferator activator

receptors (PPARs) [22–24]. Whether inhibition of infection by

genistein involves any of these and/or other proteins expressed by

hepatocytes is not yet known. In the present study we have not

observed an effect of genistein pretreatment of sporozoites on the

Figure 6. Effect of genistein on Plasmodium sporozoite-induced MET phoshorylation. Cultured Huh7 cells were treated with genistein or
DMSO (control), and inoculated with 36104 P. berghei ANKA sporozoites. Four hours later total protein extracts were analyzed with anti-phospho c-
met (Tyr1234/1235) and MET antibodies. Quantification of intensity of each band was performed and plotted on a graph.
doi:10.1371/journal.pone.0002732.g006
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infection rate. This finding suggests that genistein has no direct

effect on protein(s) expressed by sporozoites before infection, but

does not exclude an effect of genistein on the parasite after infection.

Parasite-encoded tyrosine kinases are unlikely to be targets for the

action of genistein, since the recent annotation of genomes from

several Plasmodium species have not identified genes coding for

molecules clustering for the tyrosine kinase (TK) group [25].

However, one might speculate that the inhibition of topoisomerase I

and II, by genistein, reduced the replication rate of the parasite.

While this possibility cannot be excluded, it is unlikely that the

treatment used in our study resulted in the high genistein levels in

hepatocytes that are required to inhibit topoisomerases [19,20,26–

28]. In addition, the fact that Plasmodium blood stages are not

affected by the same amounts of genistein (Figure 4D) suggests that,

in the concentrations and conditions used, a direct effect of this drug

on the parasite is quite unlikely.

The diet of many people in the world, in particular in Japan, is

enriched in genistein. Soy beans are a major source of genistein.

Because of its putative health benefits (inhibition of osteoporosis,

anti-cancer effects, anti-inflammatory effects) genistein is widely

available in developed countries as a food supplement. If genistein

is to be used for malaria prophylaxis, its safety in neonates, young

children and pregnant women is mandatory. The safety of

genistein supplementation, and in particular of soy-based infant

formulae, has been reviewed in the UK by an expert committee

and by an expert pannel of the National Toxicology Program in

the USA (http://www.food.gov.uk/science/ouradvisors/toxicity/

COTwg/wg_phyt., http://cerhr.niehs.nih.gov/chemicals/genistein-

soy/genistein/genistein-eval.html and [29]). Both reports consider

soy-based infant formula safe, although both highlight the fact that

genistein accounts for only a small percentage of the total of the

isoflavones present in soy formulae. While the committee has not

found any clear evidence for adverse effects of soy-rich diets in infants

and adults, it did emphasize the need for further research on the

potential, adverse effects of soy-based infant formulae. Several recent

studies have addressed the safety of genistein supplementation in

adults. No obvious adverse effects were observed after daily ingestion

of up to 54 mg of genistein [30]. Although in the gavage and i.p.

distribution of genistein to mice doses of genistein higher than

54 mg/Kg/day per mouse were used, in our in vivo experiments with

the genistein supplemented diet genistein amounts in sera were never

higher than 5 mM (Table 1), which have been recently considered

non-toxic values of total genistein [31].

Moreover, genistein is inexpensive, easy to preserve and to

distribute. One approach to ensure distribution to a large number

of people would be to add the compound to flour, a dietary staple

in many malaria endemic countries. Alternatively one might

envisage including soy plants in agriculture and soy beans in the

diet of populations in endemic countries, as has recently been

suggested as a strategy to improve both the health and the

economy of these populations (http://www.idrc.ca/en/ev-31644-

201-1-DO_TOPIC.html). Since genistein is safe and widely

consumed as a natural constituent or a supplement in diets of

Western populations, testing its potential for malaria prophylaxis

in non-human primate models of malaria might be envisaged as an

intermediate step towards determining whether the protective

effects we have observed in mice can be confirmed in humans.

Materials and Methods

Cells and parasites
HepG2, and Hepa1-6 cells (human and mouse hepatoma cell

lines, respectively) were maintained in DMEM 10% FCS, 1%

Penicillin/Streptomycin and 1 mM glutamine. HepG2 or Hepa1-

6 cells (26105) were seeded in 24-well plates and allowed to adhere

for 24 hours before infection. Huh7 cells (human hepatoma cell

line) were maintained in RPMI 10% FCS, 1% Penicillin/

Streptomycin and 1 mM glutamine. Huh7 cells (1,756105) were

Table 1. Genistein concentration in mouse sera (*p,0,05;
***p,0,001)

Genistein
Admnistration
(oral)

Time of
measurement

Genistein
Concentration
(mM)

Genistein
Concentration
(ng/ml)

Single dose
Control (H2O)

6 h after gavage 0,42 114,0

0,06 17,4

Single dose
(200 mg/kg)

2 h after gavage* 7,07 1910,6

15,00 4053,2

13,25 3581,5

7,23 1952,7

6 h after gavage 2,29 619,9

0,57 153,8

0,32 87,7

0,45 124,2

Control Diet 7–9 weeks old mice 0,11 32,0

0,09 26,4

0,19 52,2

0,21 55,6

0,19 51,3

0,47 126,9

0,39 104,6

0,15 41,5

0,14 37,5

0,13 36,3

0,28 75,2

0,13 36,3

0,13 35,5

0,17 46,9

Genistei
Supplemented-diet
(1000 ppm)***

7–9 weeks old mice 3,32 896,6

1,99 539,1

1,35 367,0

2,26 611,5

3,02 818,0

1,34 362,7

3,14 848,5

3,75 1013,9

0,20 55,0

1,11 300,9

0,84 227,9

1,37 371,1

0,68 184,8

1,16 313,8

1,16 313,9

1,42 385,9

doi:10.1371/journal.pone.0002732.t001
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seeded in 24-well plates and allowed to adhere for 24 hours before

infection. Green fluorescent protein (GFP)-expressing P. berghei

ANKA sporozoites [32] were obtained from the dissection of

infected Anopheles stephensi mosquito salivary glands.

In vitro infection
P. berghei ANKA sporozoites (46104/well) were added to

monolayers of Hepa1-6 or HepG2 cells in 24-well plates. At the

time of infection (t0) a range of genistein doses were added to the

medium. As control, an equivalent volume of DMSO (dimethyl-

sulphoxide) was added. After 24 hours cells were fixed and stained

with mouse anti-EEF (exo-erythrocytic forms of the parasite)

antibody (2E6) [33], followed by an anti-mouse secondary

antibody. In all experiments, genistein was left in the cultures

since the time of addition until the cells were fixed for

quantification of infection. Infection was quantified by counting

the total number of EEFs per coverslip using fluorescence

microscopy (magnification 4006). To assess the time window at

which genistein has an effect on infection, P. berghei ANKA

sporozoites (46104/well) were added to the monolayers of HepG2

cells and genistein was added at different time-points. Pre-

treatment of cells was performed by adding genistein to cells for

2 hours followed by wash and addition of sporozoites. The level of

infection was measured as described above, 24 hours post-

infection with sporozoites. Quantification of the area of 100

individual EEFs of each group was performed using ImageJ 1.36b

software. The results are expressed as areas in mm2.

Viability of genistein-treated cells and sporozoites
HepG2 cells (26105) were seeded in 24-well plates and allowed

to adhere for 24 hours before addition of genistein at doses of

25 mM or 250 mM. Twenty four hours later the number of

adherent cells was determined in 10 fields per coverslip, in

triplicates. The number of adherent cells was also observed

48 hours post genistein treatment. To test whether genistein had a

direct effect on the parasite, sporozoites were treated for

30 minutes with 100mM genistein. Control sporozoites were

treated with equivalent volume of DMSO. After 30 min of

incubation, sporozoites were washed and added to a monolayer of

HepG2 cells seeded 24 hours before. Infection was assessed

24 hours later by determining the number of EEFs in each well.

Additionally cells were allowed to grow both in the presence of

genistein and taxol, a microtubule depolimirizing drugs that causes

cell dead, and 24 hours later percentage of cell death was

determined by flow cytometry with propidium iodide staining,

Fluorescence Activated Cell Sorting (FACS) analysis
FACS analysis at 2, 6, 30 and 44 hours after sporozoite addition

was performed to determine the percentage of parasite-containing

cells and parasite-GFP intensity within infected cells. Cell samples

for FACS analysis were processed as previously described [10].

Mice and genistein administration
C57BL/6 mice were bred and housed in the pathogen-free

facilities of the Instituto de Gulbenkian de Ciência following all the

EU regulations. The mice were then moved to the Instituto de

Medicina Molecular Animal House were all the experiments were

performed. All protocols were approved by the IMM Animal Care

Committee. Seven to 10 week old male and female C57Bl/6 mice

were treated with genistein or vehicle (control), and infected with

P. berghei ANKA sporozoites. For intraperitoneal administration,

mice were treated with a single dose of genistein (200 mg/kg in

200 mL DMSO) or DMSO alone (controls), immediately before P.

berghei ANKA sporozoite inoculation. For oral administration, a

suspension of genistein in water (200 mL, 200 mg/kg) was given to

mice by gavage 6 hours prior to infection with 16104 P. berghei

ANKA sporozoites. For genistein administration in the diet, mice

were given food supplemented with one thousand parts per million

(1000 ppm) genistein (genistein 1000 ppm RM3(P)–SDS, Eng-

land). Control mice were fed with the same diet without genistein

supplementation (RM3(P)–SDS, England). Mice were fed starting

on their weaning date, and for at least 5 weeks before infection

with sporozoites, or breeding couples and their litters were kept on

genistein supplemented or control diet through generations. All

mice were infected with 16104 P. berghei ANKA sporozoites

between the ages of 7 and 9 weeks old and liver infection was

determined 40 hours later. In a parallel set of experiments,

sporozoite infection was allowed to proceed to blood stage, to

assess the impact of genistein in disease progression.

Quantification of liver infection by quantitative Real Time
PCR

Mice treated with genistein and controls were infected by

intravenous injection with 16104 P. berghei ANKA sporozoites.

Forty hours post-sporozoite injection, livers were dissected and

homogenized, and total RNA was extracted with an RNeasy Mini

kit Quiagen, according to the manufacturer’s recommendation.

cDNA was obtained by reverse transcription using the First-strand

cDNA synthesis kit (Roche) following the manufacturer’s instruc-

tions. Quantitative RT-PCR reactions were performed for

quantification of parasite load, using an ABI PRISM 7000,

Applied Biosystem, and specific primers for Plasmodium berghei 18 S

rRNA (59-AAGCATTAAATAAAGC GAATACATCCTTAC-39

and 59-GGAGATTGGTTTTGACGTTTATGTG-39); or specif-

ic primers for P. yoelii 18 S rRNA (59 –GGGGATTGGTTTT-

GACGTTTTTGCG-39 and 59-AAGCATTAAATAAAGCGAA-

TACATCCTTAT-39) were used for quantification of parasite

load in the livers of mice 40 hours after sporozoite challenge [34].

The amplification program consisted of incubation at 50uC for

2 min, 95uC for 10 min, followed by 50 cycles at 95uC for 15 s

and 60uC for 1 min. For external standardization, plasmids

encoding cDNA fragments cloned into TOPO TA, Invitrogen;

corresponding to the amplified regions of the corresponding genes,

were utilized. Copy numbers were calculated comparing the cycle

numbers of the log-linear phase of the samples with the cycle

numbers of the external standards.

Genistein quantification in the sera
‘‘Free’’ analytes_aglycones, were extracted from the plasma/

serum sample with ethyl acetate. The organic phase was

evaporated and the dried residue was reconstituted in the mobile

phase. For determination of the ‘‘total’’ isoflavones the glucuro-

nide- and sulphate-conjugates were cleaved by enzymatic

hydrolysis prior to ethyl acetate extraction. Chromatographic

separation was performed by HPLC/MS on a C18-column in the

gradient mode. Mass spectrometric detection (Agilent LC/MSD

VL single-quadrupole-mass spectrometer equipped with elektros-

pray-ion source) was carried out with negative electrospray

ionisation in the SIM-mode. Specifically, 200 ml of plasma were

transferred into a 2 mL Eppendorf tube and 100 ml of enzyme

solution were added. For enzymatic cleavage of the glucuronide-

and sulphate-conjugates the samples were incubated at 38uC for

3 h, followed by addition of 30 ml internal standard solution. For

extraction, 1200 ml ethyl acetate was added to the sample, shaken

for 5 min at 300 rpm and centrifuged for 10 min at 10000 rpm

and 10uC. 1000 ml of the supernatant was transferred into a 2 ml

Eppendorf tube and evaporated at 30–35uC to dryness with a
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Vortex-Evaporator or Speed Vac. The dried residue was

reconstituted in 150 ml mobile phase, briefly vortexed, and

transferred into an HPLC vial. Forty to 75 ml were injected onto

the analytical column and analyzed by HPLC-MS [35]. Data

acquisition of extracted ion chromatograms, integration and

quantification was performed with the Chemstation Software

(Version 9.03 or higher) from Agilent Technologies.

Quantification of blood infection and severity of disease
After sporozoite inoculation, peripheral blood parasitemias were

followed daily by counting parasites in Giemsa stained thin blood

films. To accurately quantify parasitemia in the first 96 hours post-

infection, 50 to 100 microscope fields were examined in each

blood film. At later time points, when the levels of parasitemia

were higher, 20 microscope fields were counted per mouse. Mice

were checked daily for development of ECM symptoms, which

include ataxia, paralysis, deviation of the head and convulsions,

coma and death.

Blood stage infection
Mice fed on a 1000 ppm genistein supplemented diet or control

diet were infected with 16106 P. berghei ANKA iRBC that were

freshly obtained after one passage from infection with a frozen vial.

Peripheral blood parasitemia and ECM symptoms were deter-

mined as described above.

Whole-cell lysate preparation
To detect the human hepatocyte growth factor receptor (h-

MET) and determine its phosphorylation state, total cell extracts

were prepared by suspending cell pellets in cold buffer A (20 mM

Tris-HCl, pH 7,5; 1% (v/v) NP40; 13,7 mM NaCl; 0,5 mM

EDTA; 15% (v/v) glicerol; 1 mM DTT) suplemented with

protease and phosphatase inhibitors, for 30 min on ice followed

by centrifugation at 14000 rpm, for 15 min at 4uC. Protein

concentrations were determined using the Bio-Rad Laboratories

DC protein assay kit and equal amounts of protein extracts

(40 mg) were separated by 8% SDS-PAGE gels, transferred onto

nitrocellulose membranes and processed for Western blotting. The

antibody directed to phospho-MET was used at 1:1000 dilution

(#3126; Cell signalling technology, Inc.) and b-chain of human

MET was detected with the antibody MET (C-12) at 0,5 mg/mL

dilution (#sc-10; Santa Cruz Biotechnology, Inc.). After incuba-

tion with the primary antibodies the enhanced chemiluminescence

detection system ECL and Kodak films (Amersham Pharmacia

Biotech, Piscataway, NJ) were used to visualize proteins on the

nitrocellulose blots.
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