8,384 research outputs found

    Role of oxidative stress in ERK and p38 MAPK activation induced by the chemical sensitizer DNFB in a fetal skin dendritic cell line

    Get PDF
    The intracellular mechanisms involved in the early phase of dendritic cell (DC) activation upon contact with chemical sensitizers are not well known. The strong skin sensitizer 2,4-dinitrofluorobenzene (DNFB) was shown to induce the activation of mitogen-activated protein kinases (MAPK) in DC. In the present study, we investigated a putative role for oxidative stress in DNFB-induced MAPK activation and upregulation of the costimulatory molecule CD40. In a DC line generated from fetal mouse skin, DNFB induced a significant increase in protein oxidation, measured by the formation of carbonyl groups, while it had almost no effect on lipid peroxidation. The antioxidants glutathione and vitamin E, which inhibit protein and lipid oxidation, respectively, were used to assess the role of oxidative stress in DNFB-induced MAPK activation. Glutathione, but not vitamin E, inhibited DNFB-induced p38 MAPK and ERK1/2 phosphorylation, whereas none of the antioxidants interfered significantly with the DNFB-induced upregulation of CD40 protein levels. Taken together, these results indicate that DNFB activates p38 MAPK and ERK1/2 via production of reactive oxygen species, and that protein oxidation plays an important role in MAPK activation

    Involvement of JAK2 and MAPK on type II nitric oxide synthase expression in skin-derived dendritic cells

    Get PDF
    In this report, we demonstrate that a fetal mouse skin-derived dendritic cell line produces nitric oxide (NO) in response to the endotoxin [lipopolysaccharide (LPS)] and to cytokines [tumor necrosis factor-alpha (TNF-alpha) and granulocyte-macrophage colony-stimulating factor (GM-CSF)]. Expression of the inducible isoform of NO synthase (iNOS) was confirmed by immunofluorescence with an antibody against iNOS. The tyrosine kinase inhibitor genistein decreased LPS- and GM-CSF-induced nitrite (NO(-2)) production. The effect of LPS and cytokines on NO(-2) production was inhibited by the Janus kinase 2 (JAK2) inhibitor tyrphostin B42. The p38 mitogen-activated protein kinase (p38 MAPK) inhibitor SB-203580 also reduced the NO(-2) production evoked by LPS, TNF-alpha, or GM-CSF, but it was not as effective as tyrphostin B42. Inhibition of MAPK kinase with PD-098059 also slightly reduced the effect of TNF-alpha or GM-CSF on NO(-2) production. Immunocytochemistry studies revealed that the transcription factor nuclear factor-kappaB was translocated from the cytoplasm into the nuclei of fetal skin-derived dendritic cells (FSDC) stimulated with LPS, and this translocation was inhibited by tyrphostin B42. Our results show that JAK2 plays a major role in the induction of iNOS in FSDC

    Differential activation of nuclear factor kappa B subunits in a skin dendritic cell line in response to the strong sensitizer 2,4-dinitrofluorobenzene

    Get PDF
    Dendritic cell (DC) maturation is essential for the initiation of T-dependent immune responses. Nuclear factor kappa B (NF-kappaB) transcription factors are ubiquitously expressed signalling molecules, known to regulate the transcription of a large number of genes involved in immune responses, including cytokines and cell surface molecules. In this work, we studied the time-dependent activation of five members of the NF-kappaB family, p50, p52, p65, RelB and cRel, in a mouse skin DC line in response to stimulation with the strong sensitizer, 2,4-dinitrofluorobenzene (DNFB). Western blot assay revealed that exposure of fetal skin DC (FSDC) to DNFB induced the degradation of the inhibitor of NF-kappaB (IkappaB). Three out of its five members, i.e. p50, p52, and RelB, were similarly activated upon DNFB stimulation, with subsequent translocation of these subunits from the cytosol to the nucleus, but with different kinetics. In contrast, p65 expression was diminished in both the nucleus and the cytosol. The electrophoretic mobility shift assay (EMSA) showed that exposure of FSDC to DNFB induced DNA binding to NF-kappaB. Together, these results show that DNFB differentially activates the various members of the NF-kappaB family in skin DC

    Granulocyte-macrophage colony-stimulating factor activates the transcription of nuclear factor kappa B and induces the expression of nitric oxide synthase in a skin dendritic cell line.

    Get PDF
    Nitric oxide (NO) produced by skin dendritic cells and keratinocytes plays an important role in skin physiology, growth and remodelling. Nitric oxide is also involved in skin inflammatory processes and in modulating antigen presentation (either enhancing or suppressing it). In this study, we found that GM-CSF stimulates the expression of the inducible isoform of nitric oxide synthase (iNOS) in a fetal-skin-derived dendritic cell line (FSDC) and, consequently, increases the nitrite production from 11.9 +/- 3.2 micromol/L (basal level) to 26.9 +/- 4.2 micromol/L. Pyrrolidinedithiocarbamate (PDTC) inhibits nitrite production, with a half maximal inhibitory concentration (IC50) of 19.3 micromol/L and the iNOS protein expression in FSDC. In addition, western blot assays revealed that exposure of FSDC to GM-CSF induces the phosphorylation and degradation of the inhibitor of NF-kappaB (IkB), with subsequent translocation of the p50, p52 and RelB subunits of the transcription nuclear factor kappa B (NF-kappaB) from the cytosol to the nucleus. Electrophoretic mobility shift assays (EMSA) showed that FSDC exposure to GM-CSF activates the transcription factor NF-kappaB. Together, these results show that GM-CSF induces iNOS expression in skin dendritic cells by a mechanism involving activation of the NF-kappaB pathway

    Prevalence of Psychological Problems in Chinese Peritoneal Dialysis Patients

    Get PDF

    Accreting Neutron Stars in Low-Mass X-Ray Binary Systems

    Full text link
    Using the Rossi X-ray Timing Explorer (RossiXTE), astronomers have discovered that disk-accreting neutron stars with weak magnetic fields produce three distinct types of high-frequency X-ray oscillations. These oscillations are powered by release of the binding energy of matter falling into the strong gravitational field of the star or by the sudden nuclear burning of matter that has accumulated in the outermost layers of the star. The frequencies of the oscillations reflect the orbital frequencies of gas deep in the gravitational field of the star and/or the spin frequency of the star. These oscillations can therefore be used to explore fundamental physics, such as strong-field gravity and the properties of matter under extreme conditions, and important astrophysical questions, such as the formation and evolution of millisecond pulsars. Observations using RossiXTE have shown that some two dozen neutron stars in low-mass X-ray binary systems have the spin rates and magnetic fields required to become millisecond radio-emitting pulsars when accretion ceases, but that few have spin rates above about 600 Hz. The properties of these stars show that the paucity of spin rates greater than 600 Hz is due in part to the magnetic braking component of the accretion torque and to the limited amount of angular momentum that can be accreted in such systems. Further study will show whether braking by gravitational radiation is also a factor. Analysis of the kilohertz oscillations has provided the first evidence for the existence of the innermost stable circular orbit around dense relativistic stars that is predicted by strong-field general relativity. It has also greatly narrowed the possible descriptions of ultradense matter.Comment: 22 pages, 7 figures, updated list of sources and references, to appear in "Short-period Binary Stars: Observation, Analyses, and Results", eds. E.F. Milone, D.A. Leahy, and D. Hobill (Dordrecht: Springer, http://www.springerlink.com

    Neuromyelitis optica MOG-IgG causes reversible lesions in mouse brain.

    Get PDF
    INTRODUCTION: Antibodies against myelin oligodendrocyte glycoprotein (MOG-IgG) are present in some neuromyelitis optica patients who lack antibodies against aquaporin-4 (AQP4-IgG). The effects of neuromyelitis optica MOG-IgG in the central nervous system have not been investigated in vivo. We microinjected MOG-IgG, obtained from patients with neuromyelitis optica, into mouse brains and compared the results with AQP4-IgG. RESULTS: MOG-IgG caused myelin changes and altered the expression of axonal proteins that are essential for action potential firing, but did not produce inflammation, axonal loss, neuronal or astrocyte death. These changes were independent of complement and recovered within two weeks. By contrast, AQP4-IgG produced complement-mediated myelin loss, neuronal and astrocyte death with limited recovery at two weeks. CONCLUSIONS: These differences mirror the better outcomes for MOG-IgG compared with AQP4-IgG patients and raise the possibility that MOG-IgG contributes to pathology in some neuromyelitis optica patients

    Neuromyelitis optica MOG-IgG causes reversible lesions in mouse brain.

    Get PDF
    INTRODUCTION: Antibodies against myelin oligodendrocyte glycoprotein (MOG-IgG) are present in some neuromyelitis optica patients who lack antibodies against aquaporin-4 (AQP4-IgG). The effects of neuromyelitis optica MOG-IgG in the central nervous system have not been investigated in vivo. We microinjected MOG-IgG, obtained from patients with neuromyelitis optica, into mouse brains and compared the results with AQP4-IgG. RESULTS: MOG-IgG caused myelin changes and altered the expression of axonal proteins that are essential for action potential firing, but did not produce inflammation, axonal loss, neuronal or astrocyte death. These changes were independent of complement and recovered within two weeks. By contrast, AQP4-IgG produced complement-mediated myelin loss, neuronal and astrocyte death with limited recovery at two weeks. CONCLUSIONS: These differences mirror the better outcomes for MOG-IgG compared with AQP4-IgG patients and raise the possibility that MOG-IgG contributes to pathology in some neuromyelitis optica patients

    Capacidade para o trabalho e saúde: o que pensam as trabalhadoras da indústria de vestuário

    Get PDF
    Este estudo objetivou conhecer como as mulheres que atuam na indústria do vestuário em Divinópolis, Minas Gerais, entendem e relacionam os constructos capacidade para o trabalho e saúde. Utilizou-se metodologia qualitativa com análise dos depoimentos ancorada na teoria das representações sociais. Os resultados apontaram que a capacidade para o trabalho depende de fatores como capacitação, suporte social, exercício da profissão a domicilio, satisfação com o trabalho, saúde e envelhecimento. Além disso, ela sofre muitas influências externas ao trabalhador, que, por sua vez, precisa constantemente se adaptar às mudanças ocorridas. Os resultados evidenciaram a necessidade de reflexão sobre o papel das condições de trabalho e emprego, da rigidez organizacional e da perda de controle sobre o trabalho, na saúde e na capacidade para o trabalho das mulheres atuantes na indústria do vestuário
    corecore