1,359 research outputs found

    Presence of a repressor protein for testis-specific H2B (TH2B) histone gene in early stages of spermatogenesis

    Get PDF
    The rat testis-specific TH2B histone gene assumes a hypomethylated chromatin structure at all stage of spermatogenesis. However, the TH2B mRNA level is very low in pre-meiotic spermatogenic cells and rises sharply in meiotic pachytene spermatocytes. The low level of TH2B mRNA in pre-meiotic spermatogenic cells appears to be a result of transcriptional repression of the gene by a pre-meiotic cell-specific protein which binds to a site between the TATA element and the transcription initiation site of TH2B gene.The rat testis-specific TH2B histone gene assumes a hypomethylated chromatin structure at all stage of spermatogenesis. However, the TH2B mRNA level is very low in pre-meiotic spermatogenic cells and rises sharply in meiotic pachytene spermatocytes. The low level of TH2B mRNA in pre-meiotic spermatogenic cells appears to be a result of transcriptional repression of the gene by a pre-meiotic cell-specific protein which binds to a site between the TATA element and the transcription initiation site of TH2B gene

    Shaping bursting by electrical coupling and noise

    Full text link
    Gap-junctional coupling is an important way of communication between neurons and other excitable cells. Strong electrical coupling synchronizes activity across cell ensembles. Surprisingly, in the presence of noise synchronous oscillations generated by an electrically coupled network may differ qualitatively from the oscillations produced by uncoupled individual cells forming the network. A prominent example of such behavior is the synchronized bursting in islets of Langerhans formed by pancreatic \beta-cells, which in isolation are known to exhibit irregular spiking. At the heart of this intriguing phenomenon lies denoising, a remarkable ability of electrical coupling to diminish the effects of noise acting on individual cells. In this paper, we derive quantitative estimates characterizing denoising in electrically coupled networks of conductance-based models of square wave bursting cells. Our analysis reveals the interplay of the intrinsic properties of the individual cells and network topology and their respective contributions to this important effect. In particular, we show that networks on graphs with large algebraic connectivity or small total effective resistance are better equipped for implementing denoising. As a by-product of the analysis of denoising, we analytically estimate the rate with which trajectories converge to the synchronization subspace and the stability of the latter to random perturbations. These estimates reveal the role of the network topology in synchronization. The analysis is complemented by numerical simulations of electrically coupled conductance-based networks. Taken together, these results explain the mechanisms underlying synchronization and denoising in an important class of biological models

    Cardiovascular magnetic resonance of pulmonary artery growth and ventricular function after Norwood procedure with Sano modification

    Get PDF
    For hypoplastic left heart syndrome (HLHS), there have been concerns regarding pulmonary artery growth and ventricular dysfunction after first stage surgery consisting of the Norwood procedure modified with a right ventricle-to-pulmonary artery conduit. We report our experience using cardiovascular magnetic resonance (CMR) to determine and follow pulmonary arterial growth and ventricular function in this cohort

    A bovine lymphosarcoma cell line infected with theileria annulata exhibits an irreversible reconfiguration of host cell gene expression

    Get PDF
    Theileria annulata, an intracellular parasite of bovine lymphoid cells, induces substantial phenotypic alterations to its host cell including continuous proliferation, cytoskeletal changes and resistance to apoptosis. While parasite induced modulation of host cell signal transduction pathways and NFΞΊB activation are established, there remains considerable speculation on the complexities of the parasite directed control mechanisms that govern these radical changes to the host cell. Our objectives in this study were to provide a comprehensive analysis of the global changes to host cell gene expression with emphasis on those that result from direct intervention by the parasite. By using comparative microarray analysis of an uninfected bovine cell line and its Theileria infected counterpart, in conjunction with use of the specific parasitacidal agent, buparvaquone, we have identified a large number of host cell gene expression changes that result from parasite infection. Our results indicate that the viable parasite can irreversibly modify the transformed phenotype of a bovine cell line. Fifty percent of genes with altered expression failed to show a reversible response to parasite death, a possible contributing factor to initiation of host cell apoptosis. The genes that did show an early predicted response to loss of parasite viability highlighted a sub-group of genes that are likely to be under direct control by parasite infection. Network and pathway analysis demonstrated that this sub-group is significantly enriched for genes involved in regulation of chromatin modification and gene expression. The results provide evidence that the Theileria parasite has the regulatory capacity to generate widespread change to host cell gene expression in a complex and largely irreversible manner

    Induction of G1 and G2/M cell cycle arrests by the dietary compound 3,3'-diindolylmethane in HT-29 human colon cancer cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>3,3'-Diindolylmethane (DIM), an indole derivative produced in the stomach after the consumption of broccoli and other cruciferous vegetables, has been demonstrated to exert anti-cancer effects in both <it>in vivo </it>and <it>in vitro </it>models. We have previously determined that DIM (0 – 30 ΞΌmol/L) inhibited the growth of HT-29 human colon cancer cells in a concentration-dependent fashion. In this study, we evaluated the effects of DIM on cell cycle progression in HT-29 cells.</p> <p>Methods</p> <p>HT-29 cells were cultured with various concentrations of DIM (0 – 30 ΞΌmol/L) and the DNA was stained with propidium iodide, followed by flow cytometric analysis. [<sup>3</sup>H]Thymidine incorporation assays, Western blot analyses, immunoprecipitation and <it>in vitro </it>kinase assays for cyclin-dependent kinase (CDK) and cell division cycle (CDC)2 were conducted.</p> <p>Results</p> <p>The percentages of cells in the G1 and G2/M phases were dose-dependently increased and the percentages of cells in S phase were reduced within 12 h in DIM-treated cells. DIM also reduced DNA synthesis in a dose-dependent fashion. DIM markedly reduced CDK2 activity and the levels of phosphorylated retinoblastoma proteins (Rb) and E2F-1, and also increased the levels of hypophosphorylated Rb. DIM reduced the protein levels of cyclin A, D1, and CDK4. DIM also increased the protein levels of CDK inhibitors, p21<sup>CIP1/WAF1 </sup>and p27<sup>KIPI</sup>. In addition, DIM reduced the activity of CDC2 and the levels of CDC25C phosphatase and cyclin B1.</p> <p>Conclusion</p> <p>Here, we have demonstrated that DIM induces G1 and G2/M phase cell cycle arrest in HT-29 cells, and this effect may be mediated by reduced CDK activity.</p

    The ADAMTS (A Disintegrin and Metalloproteinase with Thrombospondin motifs) family

    Get PDF
    The ADAMTS (A Disintegrin and Metalloproteinase with Thrombospondin motifs) enzymes are secreted, multi-domain matrix-associated zinc metalloendopeptidases that have diverse roles in tissue morphogenesis and patho-physiological remodeling, in inflammation and in vascular biology. The human family includes 19 members that can be sub-grouped on the basis of their known substrates, namely the aggrecanases or proteoglycanases (ADAMTS1, 4, 5, 8, 9, 15 and 20), the procollagen N-propeptidases (ADAMTS2, 3 and 14), the cartilage oligomeric matrix protein-cleaving enzymes (ADAMTS7 and 12), the von-Willebrand Factor proteinase (ADAMTS13) and a group of orphan enzymes (ADAMTS6, 10, 16, 17, 18 and 19). Control of the structure and function of the extracellular matrix (ECM) is a central theme of the biology of the ADAMTS, as exemplified by the actions of the procollagen-N-propeptidases in collagen fibril assembly and of the aggrecanases in the cleavage or modification of ECM proteoglycans. Defects in certain family members give rise to inherited genetic disorders, while the aberrant expression or function of others is associated with arthritis, cancer and cardiovascular disease. In particular, ADAMTS4 and 5 have emerged as therapeutic targets in arthritis. Multiple ADAMTSs from different sub-groupings exert either positive or negative effects on tumorigenesis and metastasis, with both metalloproteinase-dependent and -independent actions known to occur. The basic ADAMTS structure comprises a metalloproteinase catalytic domain and a carboxy-terminal ancillary domain, the latter determining substrate specificity and the localization of the protease and its interaction partners; ancillary domains probably also have independent biological functions. Focusing primarily on the aggrecanases and proteoglycanases, this review provides a perspective on the evolution of the ADAMTS family, their links with developmental and disease mechanisms, and key questions for the future

    Exhaled carbon monoxide in asthmatics: a meta-analysis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The non-invasive assessment of airway inflammation is potentially advantageous in asthma management. Exhaled carbon monoxide (eCO) measurement is cheap and has been proposed to reflect airway inflammation and oxidative stress but current data are conflicting. The purpose of this meta-analysis is to determine whether eCO is elevated in asthmatics, is regulated by steroid treatment and reflects disease severity and control.</p> <p>Methods</p> <p>A systematic search for English language articles published between 1997 and 2009 was performed using Medline, Embase and Cochrane databases. Observational studies comparing eCO in non-smoking asthmatics and healthy subjects or asthmatics before and after steroid treatment were included. Data were independently extracted by two investigators and analyzed to generate weighted mean differences using either a fixed or random effects meta-analysis depending upon the degree of heterogeneity.</p> <p>Results</p> <p>18 studies were included in the meta-analysis. The eCO level was significantly higher in asthmatics as compared to healthy subjects and in intermittent asthma as compared to persistent asthma. However, eCO could not distinguish between steroid-treated asthmatics and steroid-free patients nor separate controlled and partly-controlled asthma from uncontrolled asthma in cross-sectional studies. In contrast, eCO was significantly reduced following a course of corticosteroid treatment.</p> <p>Conclusions</p> <p>eCO is elevated in asthmatics but levels only partially reflect disease severity and control. eCO might be a potentially useful non-invasive biomarker of airway inflammation and oxidative stress in nonsmoking asthmatics.</p

    Clinical array-based karyotyping of breast cancer with equivocal HER2 status resolves gene copy number and reveals chromosome 17 complexity

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>HER2 </it>gene copy status, and concomitant administration of trastuzumab (Herceptin), remains one of the best examples of targeted cancer therapy based on understanding the genomic etiology of disease. However, newly diagnosed breast cancer cases with equivocal HER2 results present a challenge for the oncologist who must make treatment decisions despite the patient's unresolved HER2 status. In some cases both immunohistochemistry (IHC) and fluorescence <it>in situ </it>hybridization (FISH) are reported as equivocal, whereas in other cases IHC results and FISH are discordant for positive versus negative results. The recent validation of array-based, molecular karyotyping for clinical oncology testing provides an alternative method for determination of HER2 gene copy number status in cases remaining unresolved by traditional methods.</p> <p>Methods</p> <p>In the current study, DNA extracted from 20 formalin fixed paraffin embedded (FFPE) tissue samples from newly diagnosed cases of invasive ductal carcinoma referred to our laboratory with unresolved HER2 status, were analyzed using a clinically validated genomic array containing 127 probes covering the HER2 amplicon, the pericentromeric regions, and both chromosome 17 arms.</p> <p>Results</p> <p>Array-based comparative genomic hybridization (array CGH) analysis of chromosome 17 resolved HER2 gene status in [20/20] (100%) of cases and revealed additional chromosome 17 copy number changes in [18/20] (90%) of cases. Array CGH analysis also revealed two false positives and one false negative by FISH due to "ratio skewing" caused by chromosomal gains and losses in the centromeric region. All cases with complex rearrangements of chromosome 17 showed genome-wide chromosomal instability.</p> <p>Conclusions</p> <p>These results illustrate the analytical power of array-based genomic analysis as a clinical laboratory technique for resolution of HER2 status in breast cancer cases with equivocal results. The frequency of complex chromosome 17 abnormalities in these cases suggests that the two probe FISH interphase analysis is inadequate and results interpreted using the HER2/CEP17 ratio should be reported "with caution" when the presence of centromeric amplification or monosomy is suspected by FISH signal gains or losses. The presence of these pericentromeric copy number changes may result in artificial skewing of the HER2/CEP17 ratio towards false negative or false positive results in breast cancer with chromosome 17 complexity. Full genomic analysis should be considered in all cases with complex chromosome 17 aneusomy as these cases are likely to have genome-wide instability, amplifications, and a poor prognosis.</p

    Increased Sleep Fragmentation Leads to Impaired Off-Line Consolidation of Motor Memories in Humans

    Get PDF
    A growing literature supports a role for sleep after training in long-term memory consolidation and enhancement. Consequently, interrupted sleep should result in cognitive deficits. Recent evidence from an animal study indeed showed that optimal memory consolidation during sleep requires a certain amount of uninterrupted sleep
    • …
    corecore