203 research outputs found

    Optimal cut-off criteria for duplex ultrasound for the diagnosis of restenosis in stented carotid arteries: Review and protocol for a diagnostic study

    Get PDF
    Background: Carotid angioplasty with stenting is a relatively new, increasingly used, less-invasive treatment for the treatment of symptomatic carotid artery stenosis. It is being evaluated in ongoing and nearly finished randomized trials. An important factor in the evaluation of stents is the occurrence of in-stent restenosis. An un-stented carotid artery is likely to have a more elastic vessel wall than a stented one, even if stenosis is present. Therefore, duplex ultrasound cut-off criteria for the degrees of an in-stent stenosis, based on blood velocity parameters, are probably different from the established cut-offs used for un-stented arteries. Routine criteria can not be applied to stented arteries but new criteria need to be established for this particular purpose. Methods/Design: Current literature was systematically reviewed. From the selected studies, the following data were extracted: publication year, population size, whether the study was prospective, which reference test was used, and if there was an indication for selection bias and for verification bias in particular. Previous studies often were retrospective, or the reference test (DSA or CTA) was carried out only when a patient was suspected of having restenosis at DUS, which may result in verification bias. Results: In general, the cut-off values are higher than those reported for unstented arteries. Previous studies often were retrospective, or the reference test (DSA or CTA) was carried out only when a patient was suspected of having restenosis at DUS, which may result in verification bias. Discussion: To address the deficiencies of the existing studies, we propose a prospective cohort study nested within the International Carotid Stenting Study (ICSS), an international multi-centre trial in which over 1,700 patients have been randomised between stenting and CEA. In this cohort we will enrol a minimum of 300 patients treated with a stent. All patients undergo regular DUS examination at the yearly follow-up visit according to the ICSS protocol. To avoid verification bias, an additional computed tomography angiography (CTA) will be performed as a reference test in all consecutive patients, regardless of the degree of stenosis on the initial DUS test

    Multidimensional Atomic Force Microscopy: A Versatile Novel Technology for Nanopharmacology Research

    Get PDF
    Nanotechnology is giving us a glimpse into a nascent field of nanopharmacology that deals with pharmacological phenomena at molecular scale. This review presents our perspective on the use of scanning probe microscopy techniques with special emphasis to multidimensional atomic force microscopy (m-AFM) to explore this new field with a particular emphasis to define targets, design therapeutics, and track outcomes of molecular-scale pharmacological interactions. The approach will be to first discuss operating principles of m-AFM and provide representative examples of studies to understand human health and disease at the molecular level and then to address different strategies in defining target macromolecules, screening potential drug candidates, developing and characterizing of drug delivery systems, and monitoring target–drug interactions. Finally, we will discuss some future directions including AFM tip-based parallel sensors integrated with other high-throughput technologies which could be a powerful platform for drug discovery

    Heart rate variability (HRV) and muscular system activity (EMG) in cases of crash threat during simulated driving of a passenger car

    Full text link
    Objectives: The aim of the study was to verify whether simultaneous responses from the muscular and circulatory system occur in the driver's body under simulated conditions of a crash threat. Materials and Methods: The study was carried out in a passenger car driving simulator. The crash was included in the driving test scenario developed in an urban setting. In the group of 22 young male subjects, two physiological signals - ECG and EMG were continuously recorded. The length of the RR interval in the ECG signal was assessed. A HRV analysis was performed in the time and frequency domains for 1-minute record segments at rest (seated position), during undisturbed driving as well as during and several minutes after the crash. For the left and right side muscles: m. trapezius (TR) and m. flexor digitorum superficialis (FDS), the EMG signal amplitude was determined. The percentage of maximal voluntary contraction (MVC) was compared during driving and during the crash. Results: As for the ECG signal, it was found that in most of the drivers changes occurred in the parameter values reflecting HRV in the time domain. Significant changes were noted in the mean length of RR intervals (mRR). As for the EMG signal, the changes in the amplitude concerned the signal recorded from the FDS muscle. The changes in ECG and EMG were simultaneous in half of the cases. Conclusion: Such parameters as mRR (ECG signal) and FDS-L amplitude (EMG signal) were the responses to accident risk. Under simulated conditions, responses from the circulatory and musculoskeletal systems are not always simultaneous. The results indicate that a more complete driver's response to a crash in road traffic is obtained based on parallel recording of two physiological signals (ECG and EMG)

    Системный анализ процесса затвердевания литых заготовок разной массы и назначения

    Get PDF
    Выявлены особенности пространственно-временной эволюции температурных полей в процессе затвердевания разных заготовок (слитков и отливок) для повышения их качества.Виявлено особливості просторово-часової еволюції температурних полів в процесі тверднення різних заготовок (зливків та виливків) для підвищення їх якості.It is revealed the peculiarities of distance-time evolution of the temperature fields in solidification process different billets (ingots and casts) for raise them quality

    Monitoring of microbial hydrocarbon remediation in the soil

    Get PDF
    Bioremediation of hydrocarbon pollutants is advantageous owing to the cost-effectiveness of the technology and the ubiquity of hydrocarbon-degrading microorganisms in the soil. Soil microbial diversity is affected by hydrocarbon perturbation, thus selective enrichment of hydrocarbon utilizers occurs. Hydrocarbons interact with the soil matrix and soil microorganisms determining the fate of the contaminants relative to their chemical nature and microbial degradative capabilities, respectively. Provided the polluted soil has requisite values for environmental factors that influence microbial activities and there are no inhibitors of microbial metabolism, there is a good chance that there will be a viable and active population of hydrocarbon-utilizing microorganisms in the soil. Microbial methods for monitoring bioremediation of hydrocarbons include chemical, biochemical and microbiological molecular indices that measure rates of microbial activities to show that in the end the target goal of pollutant reduction to a safe and permissible level has been achieved. Enumeration and characterization of hydrocarbon degraders, use of micro titer plate-based most probable number technique, community level physiological profiling, phospholipid fatty acid analysis, 16S rRNA- and other nucleic acid-based molecular fingerprinting techniques, metagenomics, microarray analysis, respirometry and gas chromatography are some of the methods employed in bio-monitoring of hydrocarbon remediation as presented in this review

    Claudins in lung diseases

    Get PDF
    Tight junctions are the most apically localized part of the epithelial junctional complex. They regulate the permeability and polarity of cell layers and create compartments in cell membranes. Claudins are structural molecules of tight junctions. There are 27 claudins known, and expression of different claudins is responsible for changes in the electrolyte and solute permeability in cells layers. Studies have shown that claudins and tight junctions also protect multicellular organisms from infections and that some infectious agents may use claudins as targets to invade and weaken the host's defense. In neoplastic diseases, claudin expression may be up- or downregulated. Since their expression is associated with specific tumor types or with specific locations of tumors to a certain degree, they can, in a restricted sense, also be used as tumor markers. However, the regulation of claudin expression is complex involving growth factors and integrins, protein kinases, proto-oncogens and transcription factors. In this review, the significance of claudins is discussed in lung disease and development

    The role of leadership in salespeople’s price negotiation behavior

    Get PDF
    Salespeople assume a key role in defending firms’ price levels in price negotiations with customers. The degree to which salespeople defend prices should critically depend upon their leaders’ influence. However, the influence of leadership on salespeople’s price defense behavior is barely understood, conceptually or empirically. Therefore, building on social learning theory, the authors propose that salespeople might adopt their leaders’ price defense behavior given a transformational leadership style. Furthermore, drawing on the contingency leadership perspective, the authors argue that this adoption fundamentally depends on three variables deduced from the motivation–ability–opportunity (MAO) framework, that is, salespeople’s learning motivation, negotiation efficacy, and perceived customer lenience. Results of a multi-level model using data from 92 salespeople and 264 salesperson–customer interactions confirm these predictions. The first to explore contingencies of salespeople’s adoption of their transformational leaders’ price negotiation behaviors, this study extends marketing theory and provides actionable guidance to practitioners

    Sex-specific control of human heart maturation by the progesterone receptor

    Get PDF
    Background: Despite in-depth knowledge of the molecular mechanisms controlling embryonic heart development, little is known about the signals governing postnatal maturation of the human heart. Methods: Single nucleus RNA-sequencing (snRNA-seq) of 54,140 nuclei from 9 human donors was used to profile transcriptional changes in diverse cardiac cell types during maturation from fetal stages to adulthood. Bulk RNA-sequencing and the assay for transposase-accessible chromatin using sequencing (ATAC-seq) were used to further validate transcriptional changes and to profile alterations in the chromatin accessibility landscape in purified cardiomyocyte nuclei from 21 human donors. Functional validation studies of sex steroids implicated in cardiac maturation were performed in human pluripotent stem cell-derived cardiac organoids and mice. Results: Our data identify the progesterone receptor as a key mediator of sex-dependent transcriptional programs during cardiomyocyte maturation. Functional validation studies in human cardiac organoids and mice demonstrate the progesterone receptor drives sex-specific metabolic programs and maturation of cardiac contractile properties. Conclusions: These data provide a blueprint for understanding human heart maturation in both sexes and reveal an important role for the progesterone receptor in human heart development.Choon Boon Sim, Belinda Phipson, Mark Ziemann, Haloom Rafehi, Richard J. Mills, Kevin I. Watt ... et al
    corecore