53 research outputs found

    The Roman Bridge: a "double pulley – suture bridges" technique for rotator cuff repair

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>With advances in arthroscopic surgery, many techniques have been developed to increase the tendon-bone contact area, reconstituting a more anatomic configuration of the rotator cuff footprint and providing a better environment for tendon healing.</p> <p>Methods</p> <p>We present an arthroscopic rotator cuff repair technique which uses suture bridges to optimize rotator cuff tendon-footprint contact area and mean pressure.</p> <p>Results</p> <p>Two medial row 5.5-mm Bio-Corkscrew suture anchors (Arthrex, Naples, FL), which are double-loaded with No. 2 FiberWire sutures (Arthrex, Naples, FL), are placed in the medial aspect of the footprint. Two suture limbs from a single suture are both passed through a single point in the rotator cuff. This is performed for both anchors. The medial row sutures are tied using the double pulley technique. A suture limb is retrieved from each of the medial anchors through the lateral portal, and manually tied as a six-throw surgeon's knot over a metal rod. The two free suture limbs are pulled to transport the knot over the top of the tendon bridge. Then the two free suture limbs that were used to pull the knot down are tied. The end of the sutures are cut. The same double pulley technique is repeated for the other two suture limbs from the two medial anchors, but the two free suture limbs are used to produce suture bridges over the tendon, by means of a Pushlock (Arthrex, Naples, FL), placed 1 cm distal to the lateral edge of the footprint.</p> <p>Conclusion</p> <p>This technique maximizes the advantages of two techniques. On the one hand, the double pulley technique provides an extremely secure fixation in the medial aspect of the footprint. On the other hand, the suture bridges allow to improve pressurized contact area and mean footprint pressure. In this way, the bony footprint in not compromised by the distal-lateral fixation, and it is thus possible to share the load between fixation points. This maximizes the strength of the repair and provides a barrier preventing penetration of synovial fluid into the healing area of tendon and bone.</p

    Posterior shoulder tightness; an intersession reliability study of 3 clinical tests.

    Get PDF
    Background Although posterior shoulder tightness (PST) has been associated with shoulder pathology and altered glenohumeral joint kinematics, uncertainty remains regarding its cause and definition. To understand the efficacy of treatments for PST, it must be possible to identify people with PST for the purposes of research and clinical decision-making. Clinical tests for PST must demonstrate acceptable levels of measurement reliability in order to identify the condition and to evaluate the response to intervention. There is currently a lack of research describing intersession reliability for measures of PST. The aim of this study was to quantify the inter-session reliability for three clinical tests used to identify PST over a 6–10 week interval. Methods A convenience sample of 26 asymptomatic adult participants (52 shoulders) were recruited from a university setting over a five-month duration. Participants attended the human movement laboratory for measurement of glenohumeral joint internal rotation, horizontal adduction and low flexion on two occasions separated by an interval of 6–10 weeks. Intra-class correlation coefficients were calculated from the mean square values derived from the within-subject, single factor (repeated measures) ANOVA. Test-retest measurement stability was evaluated by calculating the standard error of measurement and the minimum detectable change for each measurement. Results All 3 tests demonstrated good intersession intra-rater reliability (0.86–0.88), and the standard error of measurement (95%) were 7.3° for glenohumeral horizontal adduction, 9.4° for internal rotation, and 6.9° for low flexion. The minimum detectable change for glenohumeral horizontal adduction was 10.2°, internal rotation was 13.3°, and low flexion was 9.7°. Conclusion In this population of people without symptoms, the 3 measures of PST all demonstrated acceptable inter-session reliability. The standard error of measurement and minimum detectable change results can be used to determine if a change in measures of PST are due to measurement error or an actual change over time.Peer reviewe

    Lawson criterion for ignition exceeded in an inertial fusion experiment

    Get PDF
    For more than half a century, researchers around the world have been engaged in attempts to achieve fusion ignition as a proof of principle of various fusion concepts. Following the Lawson criterion, an ignited plasma is one where the fusion heating power is high enough to overcome all the physical processes that cool the fusion plasma, creating a positive thermodynamic feedback loop with rapidly increasing temperature. In inertially confined fusion, ignition is a state where the fusion plasma can begin "burn propagation" into surrounding cold fuel, enabling the possibility of high energy gain. While "scientific breakeven" (i.e., unity target gain) has not yet been achieved (here target gain is 0.72, 1.37 MJ of fusion for 1.92 MJ of laser energy), this Letter reports the first controlled fusion experiment, using laser indirect drive, on the National Ignition Facility to produce capsule gain (here 5.8) and reach ignition by nine different formulations of the Lawson criterion

    A new model of development of the mammalian ovary and follicles

    Get PDF
    Ovarian follicular granulosa cells surround and nurture oocytes, and produce sex steroid hormones. It is believed that during development the ovarian surface epithelial cells penetrate into the ovary and develop into granulosa cells when associating with oogonia to form follicles. Using bovine fetal ovaries (n = 80) we identified a novel cell type, termed GREL for Gonadal Ridge Epithelial-Like. Using 26 markers for GREL and other cells and extracellular matrix we conducted immunohistochemistry and electron microscopy and chronologically tracked all somatic cell types during development. Before 70 days of gestation the gonadal ridge/ovarian primordium is formed by proliferation of GREL cells at the surface epithelium of the mesonephros. Primordial germ cells (PGCs) migrate into the ovarian primordium. After 70 days, stroma from the underlying mesonephros begins to penetrate the primordium, partitioning the developing ovary into irregularly-shaped ovigerous cords composed of GREL cells and PGCs/oogonia. Importantly we identified that the cords are always separated from the stroma by a basal lamina. Around 130 days of gestation the stroma expands laterally below the outermost layers of GREL cells forming a sub-epithelial basal lamina and establishing an epithelial-stromal interface. It is at this stage that a mature surface epithelium develops from the GREL cells on the surface of the ovary primordium. Expansion of the stroma continues to partition the ovigerous cords into smaller groups of cells eventually forming follicles containing an oogonium/oocyte surrounded by GREL cells, which become granulosa cells, all enclosed by a basal lamina. Thus in contrast to the prevailing theory, the ovarian surface epithelial cells do not penetrate into the ovary to form the granulosa cells of follicles, instead ovarian surface epithelial cells and granulosa cells have a common precursor, the GREL cell.Katja Hummitzsch, Helen F. Irving-Rodgers, Nicholas Hatzirodos, Wendy Bonner, Laetitia Sabatier, Dieter P. Reinhardt, Yoshikazu Sado, Yoshifumi Ninomiya, Dagmar Wilhelm and Raymond J. Rodger
    • …
    corecore