8,729 research outputs found

    SoS in Disasters: Why following the manual can be a mistake

    Get PDF
    According to both the US Geological Survey and the World Bank, 280billiondollarscouldhavebeensavedif280 billion dollars could have been saved if 40 billion dollars had been invested in disaster prevention. Natural and human-made disasters that have occurred over the last few years show that there is a gap in disaster prevention caused by the interconnected nature of risks, which cannot be foreseen with current risk management methods. In this paper we point out how disaster management could benefit from a SoS approach in emergency response and preparedness strategies. Using recent disasters as case studies, we identify some keys to success in managing a SoS in preparation, during and in the aftermath of a disaster. In particular, we discuss the idea of the interconnectedness of risks in independent and interdependent systems and the application of Boardman and Sauser’s concept of “creative disobedience”, which are fundamental for goal achievement of systems belonging to a SoS

    Method to Look for Imprints of Ultrahigh Energy Nuclei Sources

    Full text link
    We propose a new method to search for heavy nuclei sources, on top of background, in the Ultra-High Energy Cosmic Ray data. We apply this method to the 69 events recently published by the Pierre Auger Collaboration and find a tail of events for which it reconstructs the source at a few degrees from the Virgo galaxy cluster. The reconstructed source is located at ~ 8.5 degrees from M87. The probability to have such a cluster of events in some random background and reconstruct the source position in any direction of the sky is about 7 x 10^(-3). The probability to reconstruct the source at less than 10 degrees from M87 in a data set already containing such a cluster of events is about 4 x 10^(-3). This may be a hint at the Virgo cluster as a bright ultra-high energy nuclei source. We investigate the ability of current and future experiments to validate or rule out this possibility, and discuss several alternative solutions which could explain the existing anisotropy in the Auger data.Comment: 12 pages (2 columns), 10 figures. Published in Physical Review

    Yet Another Model of Gamma-Ray Bursts

    Get PDF
    Sari and Piran have demonstrated that the time structure of gamma-ray bursts must reflect the time structure of their energy release. A model which satisfies this condition uses the electrodynamic emission of energy by the magnetized rotating ring of dense matter left by neutron star coalescence; GRB are essentially fast, high field, differentially rotating pulsars. The energy densities are large enough that the power appears as an outflowing equilibrium pair plasma, which produces the burst by baryon entrainment and subsequent internal shocks. I estimate the magnetic field and characteristic time scale for its rearrangement, which determines the observed time structure of the burst. There may be quasi-periodic oscillations at the rotational frequencies, which are predicted to range up to 5770 Hz (in a local frame). This model is one of a general class of electrodynamic accretion models which includes the Blandford and Lovelace model of AGN, and which can also be applied to black hole X-ray sources of stellar mass. The apparent efficiency of nonthermal particle acceleration is predicted to be 10--50%, but higher values are possible if the underlying accretion flow is super-Eddington. Applications to high energy gamma-ray observations of AGN are briefly discussed.Comment: 21pp, latex, uses aaspp4.st

    Supramolecular hierarchy among halogen and hydrogen bond donors in light-induced surface patterning

    Get PDF
    Halogen bonding, a noncovalent interaction possessing several unique features compared to the more familiar hydrogen bonding, is emerging as a powerful tool in functional materials design. Herein, we unambiguously show that one of these characteristic features, namely high directionality, renders halogen bonding the interaction of choice when developing azobenzene-containing supramolecular polymers for light-induced surface patterning. The study is conducted by using an extensive library of azobenzene molecules that differ only in terms of the bond-donor unit. We introduce a new tetrafluorophenol-containing azobenzene photoswitch capable of forming strong hydrogen bonds, and show that an iodoethynyl-containing azobenzene comes out on top of the supramolecular hierarchy to provide unprecedented photoinduced surface patterning efficiency. Specifically, the iodoethynyl motif seems highly promising in future development of polymeric optical and photoactive materials driven by halogen bonding

    Intention and motor representation in purposive action

    Get PDF
    Are there distinct roles for intention and motor representation in explaining the purposiveness of action? Standard accounts of action assign a role to intention but are silent on motor representation. The temptation is to suppose that nothing need be said here because motor representation is either only an enabling condition for purposive action or else merely a variety of intention. This paper provides reasons for resisting that temptation. Some motor representations, like intentions, coordinate actions in virtue of representing outcomes; but, unlike intentions, motor representations cannot feature as premises or conclusions in practical reasoning. This implies that motor representation has a distinctive role in explaining the purposiveness of action. It also gives rise to a problem: were the roles of intention and motor representation entirely independent, this would impair effective action. It is therefore necessary to explain how intentions interlock with motor representations. The solution, we argue, is to recognise that the contents of intentions can be partially determined by the contents of motor representations. Understanding this content-determining relation enables better understanding how intentions relate to actions

    Gamma Ray Bursts from the Evolved Galactic Nuclei

    Get PDF
    A new cosmological scenario for the origin of gamma ray bursts (GRBs) is proposed. In our scenario, a highly evolved central core in the dense galactic nucleus is formed containing a subsystem of compact stellar remnants (CSRs), such as neutron stars and black holes. Those subsystems result from the dynamical evolution of dense central stellar clusters in the galactic nuclei through merging of stars, thereby forming (as has been realized by many authors) the short-living massive stars and then CSRs. We estimate the rate of random CSR collisions in the evolved galactic nuclei by taking into account, similar to Quinlan & Shapiro (1987), the dissipative encounters of CSRs, mainly due to radiative losses of gravitational waves, which results in the formation of intermediate short-living binaries, with further coalescence of the companions to produce GRBs. We also consider how the possible presence of a central supermassive black hole, formed in a highly evolved galactic nucleus, influences the CSR binary formation. This scenario does not postulate ad hoc a required number of tight binary neutron stars in the galaxies. Instead, it gives, for the most realistic parameters of the evolved nuclei, the expected rate of GRBs consistent with the observed one, thereby explaining the GRB appearance in a natural way of the dynamical evolution of galactic nuclei. In addition, this scenario provides an opportunity for a cosmological GRB recurrence, previously considered to be a distinctive feature of GRBs of a local origin only. We also discuss some other observational tests of the proposed scenario.Comment: 25 pages, LATEX, uses aasms4.sty, accepted by Ap

    Quantification of asbestos and other mineral phase burden in necroscopic human lung tissues with a new method

    Get PDF
    Background: A large amount of studies on asbestos exposure reconstruction have been so far conducted digesting the lung tissues with appropriate reagents, separating the powder from the digestion liquid by filtration and analysing the residue by optical or electron microscopy. This analytical approach has good sensitivity but is not yet well standardized, the investigated portion is not representative of the bulk sample, the results are often characterized by lack of reproducibility and repeatability. Moreover, the numeric quantification of asbestos requires a time-consuming particle by particle analysis. Aim: to develop a new method for the complete quantitative characterization of asbestos and other mineral phases in human lung tissue. Methods: The new method is based on sodium hypochlorite digestion, separation and XRPD analysis. The XRPD approach needs moderate lung tissue amounts (at least 20 g of wet tissue), but allows to conduct a complete quantitative characterization of each crystalline phase in the sample giving bulk-representative results with good reproducibility, accuracy and precision. The detection limit of conventional XRPD was considerably improved by a novel instrumental setting and weight concentrations can be obtained, giving additional information to numeric ones, preferable in clinical and pathogenetic studies but probably not for the exposure reconstruction. Results: Among the analysed autoptic lung tissues, ten samples belonged to subjects occupationally exposed to asbestos and six were collected from urban area controls. Asbestos phases were detected in none of controls and in 5 of 10 occupationally exposed subjects (those with highest exposure history) indicating that this method is suitable for the reconstruction of medium and high asbestos exposures. It has been furthermore confirmed the mineral association found in previous studies: mainly composed by quartz, talc, clay minerals, micas, Fe-Al-Ti oxides and bio-minerals such Ca-phosphates, carbonates and oxalates
    • 

    corecore