2,204 research outputs found

    Approximate NNLO Threshold Resummation in Heavy Flavour Decays

    Get PDF
    We present an approximate NNLO evaluation of the QCD form factor resumming large logarithmic perturbative contributions in semi-inclusive heavy flavour decays.Comment: 16 pages, 3 figures, Latex; minor changes; 2 figures adde

    The description of F2 at small x incorporating angular ordering

    Get PDF
    We study the perturbative QCD description of the HERA measurements of F2(x,Q2)F_2 (x, Q^2) using a gluon distribution that is obtained from an evolution incorporating angular ordering of the gluon emissions, and which embodies both GLAP and BFKL dynamics. We compare the predictions with recent HERA data for F2F_2. We present estimates of the charm component F2c(x,Q2)F_2^c (x, Q^2) and of FL(x,Q2)F_L (x, Q^2).Comment: 8 LaTeX pages + 4 uuencoded figure

    Combining QCD and electroweak corrections to dilepton production in FEWZ

    Full text link
    We combine the next-to-next-to-leading order (NNLO) QCD corrections to lepton-pair production through the Drell-Yan mechanism with the next-to-leading order (NLO) electroweak corrections within the framework of the FEWZ simulation code. Control over both sources of higher-order contributions is necessary for measurements where percent-level theoretical predictions are crucial, and in phase-space regions where the NLO electroweak corrections grow large. The inclusion of both corrections in a single simulation code eliminates the need to separately incorporate such effects as final-state radiation and electroweak Sudakov logarithms when comparing many experimental results to theory. We recalculate the NLO electroweak corrections in the complex-mass scheme for both massless and massive final-state leptons, and modify the QCD corrections in the original FEWZ code to maintain consistency with the complex-mass scheme to the lowest order. We present phenomenological results for LHC studies that include both NNLO QCD and NLO electroweak corrections. In addition, we study several interesting kinematics features induced by experimental cuts in the distribution of photon radiation at the LHC.Comment: 21 pages, 13 figure

    A next-to-next-to-leading order calculation of soft-virtual cross sections

    Get PDF
    We compute the next-to-next-to-leading order (NNLO) soft and virtual QCD corrections for the partonic cross section of colourless-final state processes in hadronic collisions. The results are valid to all orders in the dimensional regularization parameter \ep. The dependence of the results on a particular process is given through finite contributions to the one and two-loop amplitudes. To evaluate the accuracy of the soft-virtual approximation we compare it with the full NNLO result for Drell-Yan and Higgs boson production via gluon fusion. We also provide a universal expression for the hard coefficient needed to perform threshold resummation up to next-to-next-to-leading logarithmic (NNLL) accuracy.Comment: 25 pages, 4 figure

    Next-to-leading order jet distributions for Higgs boson production via weak-boson fusion

    Full text link
    The weak-boson fusion process is expected to provide crucial information on Higgs boson couplings at the Large Hadron Collider at CERN. The achievable statistical accuracy demands comparison with next-to-leading order QCD calculations, which are presented here in the form of a fully flexible parton Monte Carlo program. QCD corrections are determined for jet distributions and are shown to be modest, of order 5 to 10% in most cases, but reaching 30% occasionally. Remaining scale uncertainties range from order 5% or less for distributions to below +-2% for the Higgs boson cross section in typical weak-boson fusion search regions.Comment: 19 pages, 8 figure

    THE GLUON DISTRIBUTION AT SMALL x OBTAINED FROM A UNIFIED EVOLUTION EQUATION.

    Get PDF
    We solve a unified integral equation to obtain the x,QTx, Q_T and QQ dependence of the gluon distribution of a proton in the small xx regime; where xx and QTQ_T are the longitudinal momentum fraction and the transverse momentum of the gluon probed at a scale QQ. The equation generates a gluon with a steep xλx^{- \lambda} behaviour, with λ0.5\lambda \sim 0.5, and a QTQ_T distribution which broadens as xx decreases. We compare our solutions with, on the one hand, those that we obtain using the double-leading-logarithm approximation to Altarelli-Parisi evolution and, on the other hand, to those that we determine from the BFKL equation.Comment: LaTeX file with 10 postscript figures (uuencoded

    Multi-gluon helicity amplitudes with one off-shell leg within high energy factorization

    Get PDF
    Basing on the Slavnov-Taylor identities, we derive a new prescription to obtain gauge invariant tree-level scattering amplitudes for the process g*g->Ng within high energy factorization. Using the helicity method, we check the formalism up to several final state gluons, and we present analytical formulas for the the helicity amplitudes for N=2. We also compare the method with Lipatov's effective action approach.Comment: 25 pages, quite a few figures, an appendix added, typos correcte

    Subtraction Terms for Hadronic Production Processes at Next-to-Next-to-Leading Order

    Full text link
    I describe a subtraction scheme for the next-to-next-to-leading order calculation of single inclusive production at hadron colliders. Such processes include Drell-Yan, W^{+/-}, Z and Higgs Boson production. The key to such a calculation is a treatment of initial state radiation which preserves the production characteristics, such as the rapidity distribution, of the process involved. The method builds upon the Dipole Formalism and, with proper modifications, could be applied to deep inelastic scattering and e^+ e^- annihilation to hadrons.Comment: 4 page
    corecore