32,606 research outputs found
Screening effects in Coulomb frustrated phase separation
We solve a model of phase separation among two competing phases frustrated by
the long-range Coulomb interaction in two and three dimensions (2D/3D) taking
into account finite compressibility effects. In the limit of strong frustration
in 2D, we recover the results of R. Jamei, S. Kivelson, and B. Spivak, Phys.
Rev. Lett. 94, 056805 (2005) and the system always breaks into domains in a
narrow range of densities, no matter how big is the frustration. For weak
frustration in 2D and for arbitrary frustration in 3D the finite
compressibility of the phases is shown to play a fundamental role. Our results
clarify the different role of screening in 2D and 3D systems. We discuss the
thermodynamic stability of the system near the transition to the phase
separated state and the possibility to observe it in real systems.Comment: 8 pages, 8 figure
Phase diagram for Coulomb-frustrated phase separation in systems with negative short-range compressibility
Using numerical techniques and asymptotic expansions we obtain the phase
diagram of a paradigmatic model of Coulomb frustrated phase separation in
systems with negative short-range compressibility. The transition from the
homogeneous phase to the inhomogeneous phase is generically first order in
isotropic three-dimensional systems except for a critical point. Close to the
critical point, inhomogeneities are predicted to form a BCC lattice with
subsequent transitions to a triangular lattice of rods and a layered structure.
Inclusion of a strong anisotropy allows for second- and first-order transition
lines joined by a tricritical point.Comment: 4 pages, 3 figures. Improved figures and presentatio
Structural study of the interaction of vanadate with the ligand 1,2-dimethyl-3-hydroxy-4-pyridinone (Hdmpp) in aqueous solution
The interaction of vanadate with the ligand 1,2-dimethyl-3-hydroxy-4-pyridinone (Hdmpp) was studied in aqueous solution using a combination of multinuclear NMR and EPR spectroscopies, as well as potentiometry and cyclic voltammetry. The different species in solution were identified and characterized, and their pKa values and stability constants determined. The vanadium complexes formed in solution are strongly dependent on media composition (ionic strength, presence of buffer), pH and metal-to-ligand ratio (M:L). Two major species -- V(V)/dmpp and V(V)/(dmpp)2 -- are formed in a 140 mM NaCl solution within the pH range 4.5 to 9.0, when M:L=1:2. In the presence of excess ligand (M:L<=1:5), only the 1:2 complex is present, and at pH<4 paramagnetic species are detected by EPR in solution, thus indicating a reducing capacity of the ligand. Cyclic voltammetry shows that redox processes in solution are not just electron transfer, but are accompanied by chemical reactions. The pKa values and stability constants were determined both by 51V NMR spectroscopy and potentiometry. The present results have a particular interest in the understanding of the aqueous solution chemistry in aerobic conditions of bis(1,2-dimethyl-3-hydroxy-4-pyridinonato) oxovanadium(IV) complex, VO(dmpp)2, a vanadium compound with potential insulin-mimetic properties.http://www.sciencedirect.com/science/article/B6TGG-40X8DKT-3C/1/3226f220763b348a4f3d74ae0fcd0e2
Magnetic-field and chemical-potential effects on the low-energy separation
We show that in the presence of a magnetic field the usual low-energy
separation of the Hubbard chain is replaced by a ``'' and ``''
separation. Here and refer to small-momentum and low-energy independent
excitation modes which couple both to charge and spin. Importantly, we find the
exact generators of these excitations both in the electronic and pseudoparticle
basis. In the limit of zero magnetic field these generators become the usual
charge and spin fluctuation operators. The and elementary excitations
are associated with the and pseudoparticles, respectively. We also
study the separate pseudoparticle left and right conservation laws. In the
presence of the magnetic field the small-momentum and low-energy excitations
can be bosonized. However, the suitable bosonization corresponds to the and
pseudoparticle modes and not to the usual charge and spin fluctuations. We
evaluate exactly the commutator between the electronic-density operators. Its
spin-dependent factor is in general non diagonal and depends on the
interaction. The associate bosonic commutation relations characterize the
present unconventional low-energy separation.Comment: 29 pages, latex, submitted to Phys. Rev.
Exponential behavior of the interlayer exchange coupling across non-magnetic metallic superlattices
It is shown that the coupling between magnetic layers separated by
non-magnetic metallic superlattices can decay exponentially as a function of
the spacer thickness , as opposed to the usual decay. This effect
is due to the lack of constructive contributions to the coupling from extended
states across the spacer. The exponential behavior is obtained by properly
choosing the distinct metals and the superlattice unit cell composition.Comment: To appear in Phys. Rev.
Conservation laws and bosonization in integrable Luttinger liquids
We examine and explain the Luttinger-liquid character of models solvable by
the Bethe ansatz by introducing a suitable bosonic operator algebra. In the
case of the Hubbard chain, this involves two bosonic algebras which apply to
{\it all} values of , electronic density, and magnetization. Only at zero
magnetization does this lead to the usual charge - spin separation. We show
that our ``pseudoparticle'' operator approach clarifies, unifies, and extends
several recent results, including the existence of independent right and left
equations of motion and the concept of ``pseudoparticle'' (also known as
``Bethe quasiparticle'').Comment: 12 pages, RevTeX, preprint CSI
Infrared properties of MgAlBC) single crystals in the normal and superconducting state
The reflectivity of -oriented MgAl(BC) single crystals has been measured by means of infrared
microspectroscopy for cm. An increase with doping of
the scattering rates in the and bands is observed, being more
pronounced in the C doped crystals. The -band plasma frequency also
changes with doping due to the electron doping, while the -band one is
almost unchanged. Moreover, a interband excitation, predicted
by theory, is observed at eV in the undoped sample,
and shifts to lower energies with doping. By performing theoretical calculation
of the doping dependence , the experimental observations can be
explained with the increase with electron doping of the Fermi energy of the
holes in the -band. On the other hand, the band density of
states seems not to change substantially. This points towards a reduction
driven mainly by disorder, at least for the doping level studied here. The
superconducting state has been also probed by infrared synchrotron radiation
for cm in one pure and one C-doped sample. In the
undoped sample ( = 38.5 K) a signature of the -gap only is observed.
At = 0.08 ( = 31.9 K), the presence of the contribution of the
-gap indicates dirty-limit superconductivity in both bands.Comment: 12 pages, 9 figure
Dynamical charge and spin density wave scattering in cuprate superconductor
We show that a variety of spectral features in high-T_c cuprates can be
understood from the coupling of charge carriers to some kind of dynamical order
which we exemplify in terms of fluctuating charge and spin density waves. Two
theoretical models are investigated which capture different aspects of such
dynamical scattering. The first approach leaves the ground state in the
disordered phase but couples the electrons to bosonic degrees of freedom,
corresponding to the quasi singular scattering associated with the closeness to
an ordered phase. The second, more phenomological approach starts from the
construction of a frequency dependent order parameter which vanishes for small
energies. Both theories capture scanning tunneling microscopy and angle-resoved
photoemission experiments which suggest the protection of quasiparticles close
to the Fermi energy but the manifestation of long-range order at higher
frequencies.Comment: 27 pages, 13 figures, to appear in New J. Phy
On the eigenproblems of PT-symmetric oscillators
We consider the non-Hermitian Hamiltonian H=
-\frac{d^2}{dx^2}+P(x^2)-(ix)^{2n+1} on the real line, where P(x) is a
polynomial of degree at most n \geq 1 with all nonnegative real coefficients
(possibly P\equiv 0). It is proved that the eigenvalues \lambda must be in the
sector | arg \lambda | \leq \frac{\pi}{2n+3}. Also for the case
H=-\frac{d^2}{dx^2}-(ix)^3, we establish a zero-free region of the
eigenfunction u and its derivative u^\prime and we find some other interesting
properties of eigenfunctions.Comment: 21pages, 9 figure
Evidence of non-thermal X-ray emission from HH 80
Protostellar jets appear at all stages of star formation when the accretion
process is still at work. Jets travel at velocities of hundreds of km/s,
creating strong shocks when interacting with interstellar medium. Several cases
of jets have been detected in X-rays, typically showing soft emission. For the
first time, we report evidence of hard X-ray emission possibly related to
non-thermal processes not explained by previous models of the post-shock
emission predicted in the jet/ambient interaction scenario. HH 80 is located at
the south head of the jet associated to the massive protostar IRAS 18162-2048.
It shows soft and hard X-ray emission in regions that are spatially separated,
with the soft X-ray emission region situated behind the region of hard X-ray
emission. We propose a scenario for HH 80 where soft X-ray emission is
associated to thermal processes from the interaction of the jet with denser
ambient matter and the hard X-ray emission is produced by synchrotron radiation
at the front shock.Comment: Accepted for publication in ApJ
- …