32,606 research outputs found

    Screening effects in Coulomb frustrated phase separation

    Full text link
    We solve a model of phase separation among two competing phases frustrated by the long-range Coulomb interaction in two and three dimensions (2D/3D) taking into account finite compressibility effects. In the limit of strong frustration in 2D, we recover the results of R. Jamei, S. Kivelson, and B. Spivak, Phys. Rev. Lett. 94, 056805 (2005) and the system always breaks into domains in a narrow range of densities, no matter how big is the frustration. For weak frustration in 2D and for arbitrary frustration in 3D the finite compressibility of the phases is shown to play a fundamental role. Our results clarify the different role of screening in 2D and 3D systems. We discuss the thermodynamic stability of the system near the transition to the phase separated state and the possibility to observe it in real systems.Comment: 8 pages, 8 figure

    Phase diagram for Coulomb-frustrated phase separation in systems with negative short-range compressibility

    Full text link
    Using numerical techniques and asymptotic expansions we obtain the phase diagram of a paradigmatic model of Coulomb frustrated phase separation in systems with negative short-range compressibility. The transition from the homogeneous phase to the inhomogeneous phase is generically first order in isotropic three-dimensional systems except for a critical point. Close to the critical point, inhomogeneities are predicted to form a BCC lattice with subsequent transitions to a triangular lattice of rods and a layered structure. Inclusion of a strong anisotropy allows for second- and first-order transition lines joined by a tricritical point.Comment: 4 pages, 3 figures. Improved figures and presentatio

    Structural study of the interaction of vanadate with the ligand 1,2-dimethyl-3-hydroxy-4-pyridinone (Hdmpp) in aqueous solution

    Get PDF
    The interaction of vanadate with the ligand 1,2-dimethyl-3-hydroxy-4-pyridinone (Hdmpp) was studied in aqueous solution using a combination of multinuclear NMR and EPR spectroscopies, as well as potentiometry and cyclic voltammetry. The different species in solution were identified and characterized, and their pKa values and stability constants determined. The vanadium complexes formed in solution are strongly dependent on media composition (ionic strength, presence of buffer), pH and metal-to-ligand ratio (M:L). Two major species -- V(V)/dmpp and V(V)/(dmpp)2 -- are formed in a 140 mM NaCl solution within the pH range 4.5 to 9.0, when M:L=1:2. In the presence of excess ligand (M:L<=1:5), only the 1:2 complex is present, and at pH<4 paramagnetic species are detected by EPR in solution, thus indicating a reducing capacity of the ligand. Cyclic voltammetry shows that redox processes in solution are not just electron transfer, but are accompanied by chemical reactions. The pKa values and stability constants were determined both by 51V NMR spectroscopy and potentiometry. The present results have a particular interest in the understanding of the aqueous solution chemistry in aerobic conditions of bis(1,2-dimethyl-3-hydroxy-4-pyridinonato) oxovanadium(IV) complex, VO(dmpp)2, a vanadium compound with potential insulin-mimetic properties.http://www.sciencedirect.com/science/article/B6TGG-40X8DKT-3C/1/3226f220763b348a4f3d74ae0fcd0e2

    Magnetic-field and chemical-potential effects on the low-energy separation

    Full text link
    We show that in the presence of a magnetic field the usual low-energy separation of the Hubbard chain is replaced by a ``cc'' and ``ss'' separation. Here cc and ss refer to small-momentum and low-energy independent excitation modes which couple both to charge and spin. Importantly, we find the exact generators of these excitations both in the electronic and pseudoparticle basis. In the limit of zero magnetic field these generators become the usual charge and spin fluctuation operators. The cc and ss elementary excitations are associated with the cc and ss pseudoparticles, respectively. We also study the separate pseudoparticle left and right conservation laws. In the presence of the magnetic field the small-momentum and low-energy excitations can be bosonized. However, the suitable bosonization corresponds to the cc and ss pseudoparticle modes and not to the usual charge and spin fluctuations. We evaluate exactly the commutator between the electronic-density operators. Its spin-dependent factor is in general non diagonal and depends on the interaction. The associate bosonic commutation relations characterize the present unconventional low-energy separation.Comment: 29 pages, latex, submitted to Phys. Rev.

    Exponential behavior of the interlayer exchange coupling across non-magnetic metallic superlattices

    Full text link
    It is shown that the coupling between magnetic layers separated by non-magnetic metallic superlattices can decay exponentially as a function of the spacer thickness NN, as opposed to the usual N−2N^{-2} decay. This effect is due to the lack of constructive contributions to the coupling from extended states across the spacer. The exponential behavior is obtained by properly choosing the distinct metals and the superlattice unit cell composition.Comment: To appear in Phys. Rev.

    Conservation laws and bosonization in integrable Luttinger liquids

    Full text link
    We examine and explain the Luttinger-liquid character of models solvable by the Bethe ansatz by introducing a suitable bosonic operator algebra. In the case of the Hubbard chain, this involves two bosonic algebras which apply to {\it all} values of UU, electronic density, and magnetization. Only at zero magnetization does this lead to the usual charge - spin separation. We show that our ``pseudoparticle'' operator approach clarifies, unifies, and extends several recent results, including the existence of independent right and left equations of motion and the concept of ``pseudoparticle'' (also known as ``Bethe quasiparticle'').Comment: 12 pages, RevTeX, preprint CSI

    Infrared properties of Mg1−x_{1-x}Alx(_x(B1−y_{1-y}Cy_{y})2_2 single crystals in the normal and superconducting state

    Full text link
    The reflectivity R(ω)R (\omega) of abab-oriented Mg1−x_{1-x}Alx_x(B1−y_{1-y }Cy_y)2_2 single crystals has been measured by means of infrared microspectroscopy for 1300<ω<170001300<\omega<17000 cm−1^{-1}. An increase with doping of the scattering rates in the π\pi and σ\sigma bands is observed, being more pronounced in the C doped crystals. The σ\sigma-band plasma frequency also changes with doping due to the electron doping, while the π\pi-band one is almost unchanged. Moreover, a σ→σ\sigma\to\sigma interband excitation, predicted by theory, is observed at ωIB≃0.47\omega_{IB} \simeq 0.47 eV in the undoped sample, and shifts to lower energies with doping. By performing theoretical calculation of the doping dependence ωIB\omega_{IB}, the experimental observations can be explained with the increase with electron doping of the Fermi energy of the holes in the σ\sigma-band. On the other hand, the σ\sigma band density of states seems not to change substantially. This points towards a TcT_c reduction driven mainly by disorder, at least for the doping level studied here. The superconducting state has been also probed by infrared synchrotron radiation for 30<ω<15030<\omega<150 cm−1^{-1} in one pure and one C-doped sample. In the undoped sample (TcT_c = 38.5 K) a signature of the π\pi-gap only is observed. At yy = 0.08 (TcT_c = 31.9 K), the presence of the contribution of the σ\sigma-gap indicates dirty-limit superconductivity in both bands.Comment: 12 pages, 9 figure

    Dynamical charge and spin density wave scattering in cuprate superconductor

    Full text link
    We show that a variety of spectral features in high-T_c cuprates can be understood from the coupling of charge carriers to some kind of dynamical order which we exemplify in terms of fluctuating charge and spin density waves. Two theoretical models are investigated which capture different aspects of such dynamical scattering. The first approach leaves the ground state in the disordered phase but couples the electrons to bosonic degrees of freedom, corresponding to the quasi singular scattering associated with the closeness to an ordered phase. The second, more phenomological approach starts from the construction of a frequency dependent order parameter which vanishes for small energies. Both theories capture scanning tunneling microscopy and angle-resoved photoemission experiments which suggest the protection of quasiparticles close to the Fermi energy but the manifestation of long-range order at higher frequencies.Comment: 27 pages, 13 figures, to appear in New J. Phy

    On the eigenproblems of PT-symmetric oscillators

    Full text link
    We consider the non-Hermitian Hamiltonian H= -\frac{d^2}{dx^2}+P(x^2)-(ix)^{2n+1} on the real line, where P(x) is a polynomial of degree at most n \geq 1 with all nonnegative real coefficients (possibly P\equiv 0). It is proved that the eigenvalues \lambda must be in the sector | arg \lambda | \leq \frac{\pi}{2n+3}. Also for the case H=-\frac{d^2}{dx^2}-(ix)^3, we establish a zero-free region of the eigenfunction u and its derivative u^\prime and we find some other interesting properties of eigenfunctions.Comment: 21pages, 9 figure

    Evidence of non-thermal X-ray emission from HH 80

    Get PDF
    Protostellar jets appear at all stages of star formation when the accretion process is still at work. Jets travel at velocities of hundreds of km/s, creating strong shocks when interacting with interstellar medium. Several cases of jets have been detected in X-rays, typically showing soft emission. For the first time, we report evidence of hard X-ray emission possibly related to non-thermal processes not explained by previous models of the post-shock emission predicted in the jet/ambient interaction scenario. HH 80 is located at the south head of the jet associated to the massive protostar IRAS 18162-2048. It shows soft and hard X-ray emission in regions that are spatially separated, with the soft X-ray emission region situated behind the region of hard X-ray emission. We propose a scenario for HH 80 where soft X-ray emission is associated to thermal processes from the interaction of the jet with denser ambient matter and the hard X-ray emission is produced by synchrotron radiation at the front shock.Comment: Accepted for publication in ApJ
    • …
    corecore