23,896 research outputs found

    Entanglement Content of Quantum Particle Excitations II. Disconnected Regions and Logarithmic Negativity

    Get PDF
    In this paper we study the increment of the entanglement entropy and of the (replica) logarithmic negativity in a zero-density excited state of a free massive bosonic theory, compared to the ground state. This extends the work of two previous publications by the same authors. We consider the case of two disconnected regions and find that the change in the entanglement entropy depends only on the combined size of the regions and is independent of their connectivity. We subsequently generalize this result to any number of disconnected regions. For the replica negativity we find that its increment is a polynomial with integer coefficients depending only on the sizes of the two regions. The logarithmic negativity turns out to have a more complicated functional structure than its replica version, typically involving roots of polynomials on the sizes of the regions. We obtain our results by two methods already employed in previous work: from a qubit picture and by computing four-point functions of branch point twist fields in finite volume. We test our results against numerical simulations on a harmonic chain and find excellent agreement

    Effect of antimony on the eutectic reaction of heavy section spheroidal graphite castings

    Get PDF
    There is a strong demand for heavy section castings made of spheroidal graphite with a fully ferritic matrix, e.g. for manufacturing hubs for windmills. Such castings with slow solidification process are prone to graphite degeneration that leads to a dramatic decrease of the mechanical properties of the cast parts. Chunky graphite is certainly the most difficult case of graphite degeneracy, though it has long been known that the limited and controlled addition of antimony may help eliminate it. The drawback of this remedy is that too large Sb additions lead to other forms of degenerate graphite, and also that antimony is a pearlite promoter. As part of an investigation aimed at mastering low level additions to cast iron melts before casting, solidification of large blocks with or without Sb added was followed by thermal analysis. Comparison of the cooling curves and of the microstructures of these different castings gives suggestions to understand the controlling nucleation and growth mechanisms for chunky graphite cells

    Development and validation of the Spanish hazard perception test

    Get PDF
    Objective: The aim of the current study is to develop and obtain validity evidence for a Hazard Perception test suitable for the Spanish driving population. To obtain validity evidence to support the use of the test, the effect of hazardous and quasi-hazardous situations on the participants’ Hazard Prediction is analysed and the pattern of results of drivers of different driving experience: learner, novice and expert drivers and re-offender vs. non-offender drivers, is compared. Potentially hazardous situations are those that develop without involving any real hazard (i.e., the driver didn’t actually have to decelerate or make any evasive manoeuvre to avoid a potential collision). The current study analysed multiple offender drivers attending compulsory re-education programmes as a result of reaching the maximum number of penalty points on their driving licence, due to repeated violations of traffic laws. Method: A new video-based hazard perception test was developed, using a total of 20 hazardous situation videos plus 8 quasi-hazardous situation videos. They were selected from 167 recordings of natural hazards in real Spanish driving settings

    Modulating spin transfer torque switching dynamics with two orthogonal spin-polarizers by varying the cell aspect ratio

    Full text link
    We study in-plane magnetic tunnel junctions with additional perpendicular polarizer for subnanosecond-current-induced switching memories. The spin-transfer-torque switching dynamics was studied as a function of the cell aspect ratio both experimentally and by numerical simulations using the macrospin model. We show that the anisotropy field plays a significant role in the dynamics, along with the relative amplitude of the two spin-torque contributions. This was confirmed by micromagnetic simulations. Real-time measurements of the reversal were performed with samples of low and high aspect ratio. For low aspect ratios, a precessional motion of the magnetization was observed and the effect of temperature on the precession coherence was studied. For high aspect ratios, we observed magnetization reversals in less than 1 ns for high enough current densities, the final state being controlled by the current direction in the magnetic tunnel junction cell.Comment: 6 pages, 7 figure

    Optical-conductivity sum rule in cuprates and unconventional charge density waves: a short review

    Get PDF
    We begin with an overview of the experimental results for the temperature and doping dependences of the optical-conductivity spectral weight in cuprate superconductors across the whole phase diagram. Then we discuss recent attempts to explain the observed behavior of the spectral weight using reduced and full models with unconventional dx2y2d_{x^2-y^2} charge-density waves.Comment: 17 pages, RevTeX4, 4 EPS figures; Invited paper for a special issue of Low Temperature Physics dedicated to the 20th anniversary of HTS

    Entanglement Content of Quasiparticle Excitations

    Get PDF
    We investigate the quantum entanglement content of quasiparticle excitations in extended many-body systems. We show that such excitations give an additive contribution to the bipartite von Neumann and Rényi entanglement entropies that takes a simple, universal form. It is largely independent of the momenta and masses of the excitations and of the geometry, dimension, and connectedness of the entanglement region. The result has a natural quantum information theoretic interpretation as the entanglement of a state where each quasiparticle is associated with two qubits representing their presence within and without the entanglement region, taking into account quantum (in)distinguishability. This applies to any excited state composed of finite numbers of quasiparticles with finite de Broglie wavelengths or finite intrinsic correlation length. This includes particle excitations in massive quantum field theory and gapped lattice systems, and certain highly excited states in conformal field theory and gapless models. We derive this result analytically in one-dimensional massive bosonic and fermionic free field theories and for simple setups in higher dimensions. We provide numerical evidence for the harmonic chain and the two-dimensional harmonic lattice in all regimes where the conditions above apply. Finally, we provide supporting calculations for integrable spin chain models and other interacting cases without particle production. Our results point to new possibilities for creating entangled states using many-body quantum systems

    Entanglement Content of Quantum Particle Excitations I. Free Field Theory

    Get PDF
    We evaluate the entanglement entropy of a single connected region in excited states of one-dimensional massive free theories with finite numbers of particles, in the limit of large volume and region length. For this purpose, we use finite-volume form factor expansions of branch-point twist field two-point functions. We find that the additive contribution to the entanglement due to the presence of particles has a simple "qubit" interpretation, and is largely independent of momenta: it only depends on the numbers of groups of particles with equal momenta. We conjecture that at large momenta, the same result holds for any volume and region lengths, including at small scales. We provide accurate numerical verifications

    The Moyal bracket and the dispersionless limit of the KP hierarchy

    Get PDF
    A new Lax equation is introduced for the KP hierarchy which avoids the use of pseudo-differential operators, as used in the Sato approach. This Lax equation is closer to that used in the study of the dispersionless KP hierarchy, and is obtained by replacing the Poisson bracket with the Moyal bracket. The dispersionless limit, underwhich the Moyal bracket collapses to the Poisson bracket, is particularly simple.Comment: 9 pages, LaTe
    corecore