102 research outputs found

    Total Synthesis of Asparenydiol by Two Sonogashira Cross-Coupling Reactions Promoted by Supported Pd and Cu Catalysts

    Get PDF
    Asparenydiol, which is an important natural compound with potential pharmacological activities, was synthesized through two Sonogashira cross-coupling reactions catalyzed by supported Pd and Cu catalysts and by a Mitsunobu etherification. The optimization of the Sonogashira couplings allowed the use of catalysts supported on different matrices with good results in terms of catalytic efficiency and yields

    A new cell primo-culture method for freshwater benthic diatom communities

    Get PDF
    A new cell primo-culture method was developed for the benthic diatom community isolated from biofilm sampled in rivers. The approach comprised three steps: (1) scraping biofilm from river pebbles, (2) diatom isolation from biofilm, and (3) diatom community culture. With a view to designing a method able to stimulate the growth of diatoms, to limit the development of other microorganisms, and to maintain in culture a community similar to the original natural one, different factors were tested in step 3: cell culture medium (Chu No 10 vs Freshwater “WC” medium modified), cell culture vessel, and time of culture. The results showed that using Chu No 10 medium in an Erlenmeyer flask for cell culture was the optimal method, producing enough biomass for ecotoxicological tests as well as minimising development of other microorganisms. After 96 h of culture, communities differed from the original communities sampled in the two rivers studied. Species tolerant of eutrophic or saprobic conditions were favoured during culture. This method of diatom community culture affords the opportunity to assess, in vitro, the effects of different chemicals or effluents (water samples andindustrial effluents) on diatom communities, as well as on diatom cells, from a wide range of perspectives

    European marine omics biodiversity observation network: a strategic outline for the implementation of omics approaches in ocean observation

    Get PDF
    Marine ecosystems, ranging from coastal seas and wetlands to the open ocean, accommodate a wealth of biological diversity from small microorganisms to large mammals. This biodiversity and its associated ecosystem function occurs across complex spatial and temporal scales and is not yet fully understood. Given the wide range of external pressures on the marine environment, this knowledge is crucial for enabling effective conservation measures and defining the limits of sustainable use. The development and application of omics-based approaches to biodiversity research has helped overcome hurdles, such as allowing the previously hidden community of microbial life to be identified, thereby enabling a holistic view of an entire ecosystem’s biodiversity and functioning. The potential of omics-based approaches for marine ecosystems observation is enormous and their added value to ecosystem monitoring, management, and conservation is widely acknowledged. Despite these encouraging prospects, most omics-based studies are short-termed and typically cover only small spatial scales which therefore fail to include the full spatio-temporal complexity and dynamics of the system. To date, few attempts have been made to establish standardised, coordinated, broad scaled, and long-term omics observation networks. Here we outline the creation of an omics-based marine observation network at the European scale, the European Marine Omics Biodiversity Observation Network (EMO BON). We illustrate how linking multiple existing individual observation efforts increases the observational power in large-scale assessments of status and change in biodiversity in the oceans. Such large-scale observation efforts have the added value of cross-border cooperation, are characterised by shared costs through economies of scale, and produce structured, comparable data. The key components required to compile reference environmental datasets and how these should be linked are major challenges that we address.</jats:p

    Factors associated with paradoxical immune response to antiretroviral therapy in HIV infected patients: a case control study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A paradoxical immunologic response (PIR) to Highly Active Antiretroviral Therapy (HAART), defined as viral suppression without CD4 cell-count improvement, has been reported in the literature as 8 to 42%, around 15% in most instances. The present study aims to determine, in a cohort of HIV infected patients in Brazil, what factors were independently associated with such a discordant response to HAART.</p> <p>Methods</p> <p>A case-control study (1:4) matched by gender was conducted among 934 HIV infected patients on HAART in Brazil. Cases: patients with PIR, defined as CD4 < 350 cells/mm<sup>3 </sup>(hazard ratio for AIDS or death of at least 8.5) and undetectable HIV viral load on HAART for at least one year. Controls: similar to cases, but with CD4 counts ≥ 350 cells/mm<sup>3</sup>. Eligibility criteria were applied. Data were collected from medical records using a standardized form. Variables were introduced in a hierarchical logistic regression model if a p-value < 0.1 was determined in a bivariate analysis.</p> <p>Results</p> <p>Among 934 patients, 39 cases and 160 controls were consecutively selected. Factors associated with PIR in the logistic regression model were: total time in use of HAART (OR 0.981; CI 95%: 0.96-0.99), nadir CD4-count (OR 0.985; CI 95%: 0.97-0.99), and time of undetectable HIV viral load (OR 0.969; CI 95%: 0.94-0.99).</p> <p>Conclusions</p> <p>PIR seems to be related to a delay in the management of immunodeficient patients, as shown by its negative association with nadir CD4-count. Strategies should be implemented to avoid such a delay and improve the adherence to HAART as a way to implement concordant responses.</p
    corecore