1,676 research outputs found
Low-energy excitations in electron-doped metal phthalocyanine from NMR in LiMnPc
Li and H NMR and magnetization measurements in \lpc
(PcCHN), recently proposed as a strongly correlated
metal, are presented. Two different low-frequency dynamics are evidenced. The
first one, probed by H nuclei gives rise to a slowly relaxing magnetization
at low temperature and is associated with the freezing of MnPc spins.
This dynamic is similar to the one observed in pristine -MnPc and
originates from Li depleted chain segments. The second one, evidenced by Li
spin-lattice relaxation rate, is associated with the hopping of the electrons
along Li-rich chains. The characteristic correlation times for the two dynamics
are derived and the role of disorder is briefly discussed.Comment: 7 two-columns pages, 11 figure
Vortex Lattice Melting of a NbSe2 single grain probed by Ultrasensitive Cantilever Magnetometry
Using dynamic cantilever magnetometry, we study the vortex lattice and its
corresponding melting transition in a micrometer-size crystallite of
superconducting NbSe2. Measurements of the cantilever resonance frequency as a
function of magnetic field and temperature respond to the magnetization of the
vortex-lattice. The cantilever dissipation depends on thermally activated
vortex creep motion, whose pinning energy barrier is found to be in good
agreement with transport measurements on bulk samples. This approach reveals
the phase diagram of the crystallite, and is applicable to other micro- or
nanometer-scale superconducting samples.Comment: 5 pages, 4 figure
Magnetic field induced non-Fermi liquid to Fermi liquid crossover at the quantum critical point of YbCuAu
The temperature (T) dependence of the muon and Cu nuclear spin-lattice
relaxation rates in YbCu4.4Au0.6 is reported over nearly four decades.
It is shown that for diverges following the behaviour
predicted by the self-consistent renormalization (SCR) theory developed by
Moriya for a ferromagnetic quantum critical point. On the other hand, the
static uniform susceptibility is observed to diverge as and
, a behaviour which is not accounted for by SCR theory.
The application of a magnetic field is observed to induce a crossover to a
Fermi liquid behaviour and for is found to obey the scaling
law .Comment: 4 pages, 4 figure
Detailed abundances of a large sample of giant stars in M 54 and in the Sagittarius nucleus
Homogeneous abundances of light elements, alpha and Fe-group elements from
high-resolution FLAMES spectra are presented for 76 red giant stars in M54, a
massive globular cluster (GC) lying in the nucleus of the Sagittarius dwarf
galaxy. We also derived detailed abundances for 27 red giants belonging to the
Sgr nucleus. Our abundances assess the intrinsic metallicity dispersion (~0.19
dex, rms scatter) of M54, with the bulk of stars peaking at [Fe/H]~-1.6 and a
long tail extending to higher metallicities, similar to omega Cen. The spread
in these probable nuclear star clusters exceeds those of most GCs: these
massive clusters are located in a region intermediate between normal GCs and
dwarf galaxies. M54 shows the Na-O anticorrelation, typical signature of GCs,
which is instead absent in the Sgr nucleus. The light elements (Mg, Al, Si)
participating to the high temperature Mg-Al cycle show that the pattern of
(anti)correlations produced by proton-capture reactions in H-burning is clearly
different between the most metal-rich and most metal-poor components in the two
most massive GCs in the Galaxy, confirming early result based on the Na-O
anticorrelation. As in omega Cen, stars affected by most extreme processing,
i.e. showing the signature of more massive polluters, are those of the
metal-rich component. This can be understood if the burst of star formation
giving birth to the metal-rich component was delayed by as much as 10-30 Myr
with respect to the metal-poor one. The evolution of these massive GCs can be
reconciled in the general scenario for the formation of GCs sketched in
Carretta et al.(2010a) taking into account that omega Cen could have already
incorporated the surrounding nucleus of its progenitor and lost the rest of the
hosting galaxy while the two are still observable as distinct components in M54
and the surrounding field.Comment: 22 pages (3 pages of appendix), 25 figures. Tables 2, 3, 5, 6, and 7
are only available in electronic form at the CDS Accepted for publication on
Astronomy and Astrophysic
Superconductivity emerging from an electronic phase separation in the charge ordered phase of RbFeAs
As, Rb and Rb nuclear quadrupole resonance (NQR) and
Rb nuclear magnetic resonance (NMR) measurements in RbFeAs
iron-based superconductor are presented. We observe a marked broadening of
As NQR spectrum below K which is associated with the
onset of a charge order in the FeAs planes. Below we observe a power-law
decrease in As nuclear spin-lattice relaxation rate down to K. Below that temperature the nuclei start to probe different dynamics
owing to the different local electronic configurations induced by the charge
order. A fraction of the nuclei probes spin dynamics associated with electrons
approaching a localization while another fraction probes activated dynamics
possibly associated with a pseudogap. These different trends are discussed in
the light of an orbital selective behaviour expected for the electronic
correlations.Comment: 5 pages, 3 figures and 4 pages of supplemental materia
Electromechanical Quantum Simulators
Digital quantum simulators are among the most appealing applications of a
quantum computer. Here we propose a universal, scalable, and integrated quantum
computing platform based on tunable nonlinear electromechanical
nano-oscillators. It is shown that very high operational fidelities for single
and two qubits gates can be achieved in a minimal architecture, where qubits
are encoded in the anharmonic vibrational modes of mechanical nanoresonators,
whose effective coupling is mediated by virtual fluctuations of an intermediate
superconducting artificial atom. An effective scheme to induce large
single-phonon nonlinearities in nano-electromechanical devices is explicitly
discussed, thus opening the route to experimental investigation in this
direction. Finally, we explicitly show the very high fidelities that can be
reached for the digital quantum simulation of model Hamiltonians, by using
realistic experimental parameters in state-of-the art devices, and considering
the transverse field Ising model as a paradigmatic example.Comment: 14 pages, 8 figure
Coupling between 4f and itinerant electrons in SmFeAsO1-xFx (0.15 < x < 0.2) superconductors: an NMR study
F NMR measurements in SmFeAsOF, for ,
are presented. The nuclear spin-lattice relaxation rate increases upon
cooling with a trend analogous to the one already observed in
CeCuAu, a quasi two-dimensional heavy-fermion intermetallic
compound with an antiferromagnetic ground-state. In particular, the behaviour
of the relaxation rate either in SmFeAsOF or in
CeCuAu can be described in the framework of the self-consistent
renormalization theory for weakly itinerant electron systems. Remarkably, no
effect of the superconducting transition on F is detected, a
phenomenon which can hardly be explained within a single band model.Comment: 4 figure
- …
