7,820 research outputs found

    Dilaton Domain Walls and Dynamical Systems

    Full text link
    Domain wall solutions of dd-dimensional gravity coupled to a dilaton field σ\sigma with an exponential potential Λe−λσ\Lambda e^{-\lambda\sigma} are shown to be governed by an autonomous dynamical system, with a transcritical bifurcation as a function of the parameter λ\lambda when Λ<0\Lambda<0. All phase-plane trajectories are found exactly for λ=0\lambda=0, including separatrices corresponding to walls that interpolate between adSdadS_d and adS_{d-1} \times\bR, and the exact solution is found for d=3d=3. Janus-type solutions are interpreted as marginal bound states of these ``separatrix walls''. All flat domain wall solutions, which are given exactly for any λ\lambda, are shown to be supersymmetric for some superpotential WW, determined by the solution.Comment: 30 pp, 11 figs, significant revision of original. Minor additional corrections in version to appear in journa

    On gravitational-wave spectroscopy of massive black holes with the space interferometer LISA

    Full text link
    Newly formed black holes are expected to emit characteristic radiation in the form of quasi-normal modes, called ringdown waves, with discrete frequencies. LISA should be able to detect the ringdown waves emitted by oscillating supermassive black holes throughout the observable Universe. We develop a multi-mode formalism, applicable to any interferometric detectors, for detecting ringdown signals, for estimating black hole parameters from those signals, and for testing the no-hair theorem of general relativity. Focusing on LISA, we use current models of its sensitivity to compute the expected signal-to-noise ratio for ringdown events, the relative parameter estimation accuracy, and the resolvability of different modes. We also discuss the extent to which uncertainties on physical parameters, such as the black hole spin and the energy emitted in each mode, will affect our ability to do black hole spectroscopy.Comment: 44 pages, 21 figures, 10 tables. Minor changes to match version in press in Phys. Rev.

    Effective action for the field equations of charged black holes

    Full text link
    In this article, we consistently reduce the equations of motion for the bosonic N = 2 supergravity action, using a multi-centered black hole ansatz for the metric. This reduction is done in a general, non-supersymmetric setup, in which we extend concepts of BPS black hole technology. First of all we obtain a more general form of the black hole potential, as part of an effective action for both the scalars and the vectors in the supergravity theory. Furthermore, we show that there are extra constraints specifying the solution, which we calculate explicitly. In the literature, these constraints have already been studied in the one-center case. We also show that the effective action we obtain for non-static metrics, can be linked to the "entropy function" for the spherically symmetric case, as defined by Sen and Cardoso et al.Comment: 18 pages, (v2: small corrections, version to be published in CQG

    Relations between (κ, τ)-regular sets and star complements

    Get PDF
    Let G be a finite graph with an eigenvalue μ of multiplicity m. A set X of m vertices in G is called a star set for μ in G if μ is not an eigenvalue of the star complement G\X which is the subgraph of G induced by vertices not in X. A vertex subset of a graph is (k ,t)-regular if it induces a k -regular subgraph and every vertex not in the subset has t neighbors in it. We investigate the graphs having a (k,t)-regular set which induces a star complement for some eigenvalue. A survey of known results is provided and new properties for these graphs are deduced. Several particular graphs where these properties stand out are presented as examples

    Nernst branes from special geometry

    Get PDF
    We construct new black brane solutions in U(1)U(1) gauged N=2{\cal N}=2 supergravity with a general cubic prepotential, which have entropy density s∼T1/3s\sim T^{1/3} as T→0T \rightarrow 0 and thus satisfy the Nernst Law. By using the real formulation of special geometry, we are able to obtain analytical solutions in closed form as functions of two parameters, the temperature TT and the chemical potential μ\mu. Our solutions interpolate between hyperscaling violating Lifshitz geometries with (z,θ)=(0,2)(z,\theta)=(0,2) at the horizon and (z,θ)=(1,−1)(z,\theta)=(1,-1) at infinity. In the zero temperature limit, where the entropy density goes to zero, we recover the extremal Nernst branes of Barisch et al, and the parameters of the near horizon geometry change to (z,θ)=(3,1)(z,\theta)=(3,1).Comment: 37 pages. v2: numerical pre-factors of scalar fields q_A corrected in Section 3. No changes to conclusions. References adde

    Supporting conference attendees with visual decision making interfaces

    Get PDF
    Recent efforts in recommender systems research focus increasingly on human factors affecting recommendation acceptance, such as transparency and user control. In this paper, we present IntersectionExplorer, a scalable visualization to interleave the output of several recommender engines with user-contributed relevance information, such as bookmarks and tags. Two user studies at conferences indicate that this approach is well suited for technical audiences in smaller venues, and allowed the identification of applicability limitations for less technical audiences attending larger events. Copyright held by the owner/author(s)

    Scalar perturbations in braneworld cosmology

    Get PDF
    We study the behaviour of scalar perturbations in the radiation-dominated era of Randall-Sundrum braneworld cosmology by numerically solving the coupled bulk and brane master wave equations. We find that density perturbations with wavelengths less than a critical value (set by the bulk curvature length) are amplified during horizon re-entry. This means that the radiation era matter power spectrum will be at least an order of magnitude larger than the predictions of general relativity (GR) on small scales. Conversely, we explicitly confirm from simulations that the spectrum is identical to GR on large scales. Although this magnification is not relevant for the cosmic microwave background or measurements of large scale structure, it will have some bearing on the formation of primordial black holes in Randall-Sundrum models.Comment: 17 pages, 7 figure

    One entropy function to rule them all

    Get PDF
    We study the entropy of extremal four dimensional black holes and five dimensional black holes and black rings is a unified framework using Sen's entropy function and dimensional reduction. The five dimensional black holes and black rings we consider project down to either static or stationary black holes in four dimensions. The analysis is done in the context of two derivative gravity coupled to abelian gauge fields and neutral scalar fields. We apply this formalism to various examples including U(1)3U(1)^3 minimal supergravity.Comment: 29 pages, 2 figures, revised version for publication, details adde

    Black Hole Microstates and Attractor Without Supersymmetry

    Get PDF
    Due to the attractor mechanism, the entropy of an extremal black hole does not vary continuously as we vary the asymptotic values of various moduli fields. Using this fact we argue that the entropy of an extremal black hole in string theory, calculated for a range of values of the asymptotic moduli for which the microscopic theory is strongly coupled, should match the statistical entropy of the same system calculated for a range of values of the asymptotic moduli for which the microscopic theory is weakly coupled. This argument does not rely on supersymmetry and applies equally well to nonsupersymmetric extremal black holes. We discuss several examples which support this argument and also several caveats which could invalidate this argument.Comment: 50 pages; references adde

    Highly damped quasinormal modes of Kerr black holes

    Full text link
    Motivated by recent suggestions that highly damped black hole quasinormal modes (QNM's) may provide a link between classical general relativity and quantum gravity, we present an extensive computation of highly damped QNM's of Kerr black holes. We do not limit our attention to gravitational modes, thus filling some gaps in the existing literature. The frequency of gravitational modes with l=m=2 tends to \omega_R=2 \Omega, \Omega being the angular velocity of the black hole horizon. If Hod's conjecture is valid, this asymptotic behaviour is related to reversible black hole transformations. Other highly damped modes with m>0 that we computed do not show a similar behaviour. The real part of modes with l=2 and m<0 seems to asymptotically approach a constant value \omega_R\simeq -m\varpi, \varpi\simeq 0.12 being (almost) independent of a. For any perturbing field, trajectories in the complex plane of QNM's with m=0 show a spiralling behaviour, similar to the one observed for Reissner-Nordstrom (RN) black holes. Finally, for any perturbing field, the asymptotic separation in the imaginary part of consecutive modes with m>0 is given by 2\pi T_H (T_H being the black hole temperature). We conjecture that for all values of l and m>0 there is an infinity of modes tending to the critical frequency for superradiance (\omega_R=m) in the extremal limit. Finally, we study in some detail modes branching off the so--called ``algebraically special frequency'' of Schwarzschild black holes. For the first time we find numerically that QNM multiplets emerge from the algebraically special Schwarzschild modes, confirming a recent speculation.Comment: 19 pages, 11 figures. Minor typos corrected. Updated references to take into account some recent development
    • …
    corecore