972 research outputs found

    Strong cosmic censorship: The nonlinear story

    Get PDF
    A satisfactory formulation of the laws of physics entails that the future evolution of a physical system should be determined from appropriate initial conditions. The existence of Cauchy horizons in solutions of the Einstein field equations is therefore problematic, and expected to be an unstable artifact of General Relativity. This is asserted by the Strong Cosmic Censorship Conjecture, which was recently put into question by an analysis of the linearized equations in the exterior of charged black holes in an expanding universe. Here, we numerically evolve the nonlinear Einstein-Maxwell-scalar field equations with a positive cosmological constant, under spherical symmetry, and provide strong evidence that mass inflation indeed does not occur in the near extremal regime. This shows that nonlinear effects might not suffice to save the Strong Cosmic Censorship Conjecture.Comment: 9 pages, 8 figures. v2: Matches published versio

    Message in a bottle: energy extraction from bouncing geometries

    Full text link
    Quantum gravity phenomenology suggests the interesting possibility that black holes are not eternal. Collapse could be halted by some unknown mechanism, or Hawking radiation might leave behind a regular spacetime. Here we investigate a simple bouncing geometry, with (outer and inner) apparent horizons but no event horizon. We show that the inner horizon blueshifts radiation, which can lead to a gigantic amplification of energy observable from far away regions. Thus, if such phenomena exists in our universe, they can power high-energy bursts at late stages in their lives, when the horizons disappear and spacetime bounces back to a flat geometry.Comment: 5 pages,3 figure

    Simultaneous occurrence of sliding and crossing limit cycles in piecewise linear planar vector fields

    Get PDF
    In the present study, we consider planar piecewise linear vector fields with two zones separated by the straight line x = 0. Our goal is to study the existence of simultaneous crossing and sliding limit cycles for such a class of vector fields. First, we provide a canonical form for these systems assuming that each linear system has centre, a real one for y0, and such that the real centre is a global centre. Then, working with a first-order piecewise linear perturbation we obtain piecewise linear differential systems with three crossing limit cycles. Second, we see that a sliding cycle can be detected after a second-order piecewise linear perturbation. Finally, imposing the existence of a sliding limit cycle we prove that only one adittional crossing limit cycle can appear. Furthermore, we also characterize the stability of the higher amplitude limit cycle and of the infinity. The main techniques used in our proofs are the Melnikov method, the Extended Chebyshev systems with positive accuracy, and the Bendixson transformation

    Sustainability of the Water Resources of a River Basin

    Get PDF
    Source: ICHE Conference Archive - https://mdi-de.baw.de/icheArchiv

    Black hole collision with a scalar particle in four, five and seven dimensional anti-de Sitter spacetimes: ringing and radiation

    Full text link
    In this work we compute the spectra, waveforms and total scalar energy radiated during the radial infall of a small test particle coupled to a scalar field into a dd-dimensional Schwarzschild-anti-de Sitter black hole. We focus on d=4,5d=4, 5 and 7, extending the analysis we have done for d=3d=3. For small black holes, the spectra peaks strongly at a frequency ω∼d−1\omega \sim d-1, which is the lowest pure anti-de Sitter (AdS) mode. The waveform vanishes exponentially as t→∞t \to \infty, and this exponential decay is governed entirely by the lowest quasinormal frequency. This collision process is interesting from the point of view of the dynamics itself in relation to the possibility of manufacturing black holes at LHC within the brane world scenario, and from the point of view of the AdS/CFT conjecture, since the scalar field can represent the string theory dilaton, and 4, 5, 7 are dimensions of interest for the AdS/CFT correspondence.Comment: 16 pages, 13 figures. Published versio

    Scalar Synchrotron Radiation in the Schwarzschild-anti-de Sitter Geometry

    Get PDF
    We present a complete relativistic analysis for the scalar radiation emitted by a particle in circular orbit around a Schwarzschild-anti-de Sitter black hole. If the black hole is large, then the radiation is concentrated in narrow angles- high multipolar distribution- i.e., the radiation is synchrotronic. However, small black holes exhibit a totally different behavior: in the small black hole regime, the radiation is concentrated in low multipoles. There is a transition mass at M=0.427RM=0.427 R, where RR is the AdS radius. This behavior is new, it is not present in asymptotically flat spacetimes.Comment: 13 pages, 6 figures, published version. References adde
    • …
    corecore