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Abstract. In the present study we consider planar piecewise linear vector fields with
two zones separated by the straight line x = 0. Our goal is to study the existence of

simultaneous crossing and sliding limit cycles for such class of vector fields. First, we

provide a canonical form for these systems assuming that each linear system has center,
a real one for y < 0 and a virtual one for y > 0, and such that the real center is a global

center. Then working with a first order piecewise linear perturbation we obtain piecewise

linear differential systems with three crossing limit cycles. Second, we see that a sliding
cycle can be detected after a second order piecewise linear perturbation. Then imposing

the existence of a sliding limit cycle we prove that only one more crossing limit cycle can
appear. Finally, we also characterize the stability of the higher amplitude limit cycle and

of the infinity. The main techniques used in our proofs are the Melnikov functions, the

Extended Chebyshev systems and the Bendixson transformation.

1. Introduction and statement of the main results

For a given differential system a limit cycle is a periodic orbit isolated in the set of all
periodic orbits of the system. One of the main problems of the qualitative theory of planar
differential systems is determining the existence of limit cycles. A center is a singular point p
that possesses a neighborhood U such that U \{p} is filled by periodic solutions. A classical
way to produce and study limit cycles is by perturbing the periodic solutions of a center.
This problem has been studied intensively for continuous planar differential systems, see for
instance, [5] and the references therein.

The main objective of this paper is to study the limit cycles that can bifurcate from a
center of a discontinuous piecewise linear differential systems with two zones separated by
the straight line x = 0 when the center is perturbed inside the class of all discontinuous
piecewise linear differential systems with two zones separated by x = 0.

The study of the piecewise linear differential systems goes back to Andronov and co-
authors [1]. In the present days these systems continue receiving a considerable attention,
mainly due to their applications. Indeed, such systems are widely used to model many
real processes and different modern devices, see for instance the book [3] and the references
therein.

The case of continuous piecewise linear systems with two regions separated by a straight
line is the simplest possible configuration of piecewise linear systems. We note that even in
this simple case, establishing the existence of at most one limit cycles was a difficult task,
see [6], and [12] for a shorter proof. There are two reason for that misleading simplicity of
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piecewise linear systems: First, whereas it is easy to compute the solutions in any linear
region, the time that each orbit requires to pass from one linear region to the other is usually
not computable. Second, the increasing number of parameters.

Discontinuous piecewise linear systems with two regions separated by a straight line have
received a lot of attention during these last years, see for instance [9, 10, 13, 14, 16, 17]
among other papers. In [9], the authors conjectured that piecewise linear systems with two
regions separated by a straight line could have at most two limit cycles. Later on in [10],
the authors provided numerical evidences on the existence of three limit cycles, which was
analytically proved in [16].

In the present study, we consider planar piecewise linear vector fields with two zones
separated by the straight line x = 0. Firstly, we provide a canonical form for these systems
assuming that each linear system has center, a real one for y < 0 and a virtual one for y > 0,
such that the real center is a global center. Then, proceeding with a first order piecewise
linear perturbation, we study the bifurcation of crossing limit cycles. In short, it is shown
that any configuration of 1, 2 or 3 limit cycles can bifurcate from the periodic solutions of
the unperturbed system. We also study the stability of the higher amplitude crossing limit
cycle and the infinity. Secondly, we see that a sliding cycle can be detected after a second
order piecewise linear perturbation. Finally, imposing the existence of a sliding limit cycle
we prove that only one more crossing limit cycle appears.

1.1. Setting the problem. Consider the following planar piecewise linear differential sys-
tems with two zones separated by the straight line Σ = {(x, y);x = 0}

(1)


 ẋ

ẏ


 = Wε(x, y) =





M+
ε


 x

y


+


 u+1,ε

u+2,ε


 if x ≥ 0,

M−ε


 x

y


+


 u−1,ε

u−2,ε


 if x ≤ 0,

where M±ε is one-parameter family of 2 × 2 real matrices and u±1,ε, u
±
2,ε ∈ R. Here, the dot

denotes derivative with respect to the time variable t. We define Σ+ = {(x, y);x > 0} and
Σ− = {(x, y);x < 0} and denote the piecewise linear vector field associated to system (1)
by Wε = (W+

ε ,W
−
ε ), where W+

ε and W−ε are defined in Σ+ and Σ−, respectively.

Let p± be the singular points of W±0 . We say that a singular point p± of W±0 is real
(respectively virtual) if p+ ∈ {(x, y);x ≥ 0} or p− ∈ {(x, y);x ≤ 0} (respectively if p+ ∈
{(x, y);x ≤ 0} or p− ∈ {(x, y);x ≥ 0}). Assume that system (1) satisfies

(H1) p− is a center for the system W−0 and p− ∈ Σ−, i.e, p− is a real singular point.

(H2) p+ is a center for the system W+
0 and p+ ∈ Σ−, i.e, p+ is a virtual singular point.

(H3) p− is global center for the system W0, see Figure 1.

1.2. Canonical Form. The next result provides a canonical form for the piecewise linear
vector fields (1) having a center and it is proved in Section 3. Fixing ε = 0, we denote

M±0 =


 m±11 m±12

m±21 −m±11


 .
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p−
•

Σ

Figure 1. The global center for the system W0.

Proposition 1. Consider the piecewise linear vector field Wε(x, y) given in (1) and as-
sume that Wε(x, y) satisfies hypotheses (H1), (H2) and (H3). Then, there exists a change of
coordinates (t, x, y) 7→ (t̃, x, ỹ) where the piecewise linear vector field (1) can be written as
(x′, ỹ′)T = Zε(x, ỹ), where

Z0(x, ỹ) =





Z+
0 (x, ỹ) = A+


 x

ỹ


+


 0

d


 if x ≥ 0,

Z−0 (x, ỹ) = A−


 x

ỹ


+


 0

e


 if x ≤ 0,

A+ =


 a b

c −a


 , A− =


 0 −1

1 0


 with ρ =

√
|(m−11)2 +m−12m

−
21|, a =

1

ρ

(
m+

11

−m
−
11m

+
12

m−12

)
, b = −m

+
12

m−12
, c =

1

ρ2

(
(m−11)2m+

12

m−12
− 2m−11m

+
11 −m+

12m
+
21

)
, d = −m

+
12u

+
2

ρ
and

e = −m
−
12u
−
2

ρ
. Furthermore, the parameters of this canonical form satisfy

b < 0, c > 0, d > 0, e > 0, a2 + bc < 0.

In general we can write

(2) Zε(x, y) = Z0(x, y) + εZ1(x, y) + ε2Z2(x, y) +O(ε3)

where

Z1(x, y) =





B+


 x

y


+ v+ if x ≥ 0,

B−


 x

y


+ v− if x ≤ 0,
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and

Z2(x, y) =





C+


 x

y


+ w+ if x ≥ 0,

C−


 x

y


+ w− if x ≤ 0,

with B± =


 b±11 b±12

b±21 b±22


, v± =


 v±1

v±2


, C± =


 c±11 c±12

c±21 c±22


, w± =


 w±1

w±2


. We

denote the piecewise smooth vector field Zε by Zε = (Z+
ε , Z

−
ε ), where Z±ε is defined in Σ±.

1.3. Crossing limit cycles. For the piecewise linear differential system (2) we obtain an
upper bound for the number of crossing limit cycles bifurcating from the periodic solutions
of the unperturbed system. We define

K0 =
2d
(
ξ2(2v−1 b− be(b−11 + b−22) + 2v+1 ) + bd(b+11 + b+22)

)

eξ
,

K1 = beξ2(b−11 + b−22),

K2 = −bd
2(b+11 + b+22)

eξ
,

where a2 + bc = −ξ2, with ξ > 0.

Theorem A. Suppose Zε(x, y) is a piecewise linear vector field with two zones separated by
the straight line x = 0 such that hypotheses (H1), (H2) and (H3) are satisfied by Z0. Without
loss of generality, assume that Zε writes as (2). Then, the following statements hold.

(a) There exist elections of the parameters K0, K1, and K2 for which system Zε has any
configuration of 1, 2, or 3 crossing limit cycles taking into account their multiplicity.

(b) The highest amplitude limit cycle (when it exists) and the infinity have opposite
stability. More precisely, the highest amplitude limit cycle is stable (resp. unstable)
and the infinity is an unstable (resp. stable) periodic orbit provided that ξ(b−11 +
b−22) + b+11 + b+22 < 0 (resp. ξ(b−11 + b−22) + b+11 + b+22 > 0).

(c) The lowest amplitude limit cycle (when it exists) is stable (resp. unstable) provided
that b−11 + b−22 < 0, or b−11 + b−22 = 0 and bv−1 + v+1 > 0 (resp. b−11 + b−22 > 0, or
b−11 + b−22 = 0 and bv−1 + v+1 < 0).

Theorem A is proved in Subsection 3.3.

We note that it is well known that piecewise linear differential system with two regions
separated by a straight line can exhibit 3 crossing limit cycles. The first numerical evidence
of that was given in [10] by Huan and Yang. Then, in [16], Llibre and Ponce established an
analytical proof of the existence of 3 limit cycles. After that, many authors have provided
different examples of those systems having 3 limit cycles. For instance, in [4] Buzzi et al.,
using a seventh order piecewise linear perturbation, proved that 3 limit cycles bifurcate
from a linear center. In [13], Llibre et al. proved that 3 limit cycles bifurcates from a
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piecewise linear center, but using only a first order piecewise linear perturbation. In the
present paper, Theorem A also guarantees the bifurcation of 3 crossing limit cycles after a
first order perturbation. In the next subsection we shall see that a second order perturbation
allows the study of sliding limit cycles.

1.4. Sliding and escaping limit cycles. We recall that a sliding/escaping limit cycle is
a closed orbit composed by segments of orbits of the sliding vector field Zs (see Subsection
2.1) and Z+ and/or Z−. We must mention that this kind of limit cycle has been considered
before, see for instance [7].

Consider a piecewise linear vector field Z and assume that the sliding/escaping region
(see Subsection 2.1) is bounded. A sliding/escaping limit cycle of Z is a closed trajectory
composed by trajectories of the sliding vector field Zs, Z+, and/or Z−. More precisely, we
say that a sliding/escaping limit cycle is: of Type I if it is composed by trajectories of Zs,
and Z+

ε or Z−ε ; and of Type II if it is composed by trajectories of Zs, Z+
ε and Z−ε , see Figure

2.

Type I Type II

Σ Σ

yf1 yf1

yf2 yf2

Figure 2. Types of sliding limit cycles.

Since we are dealing with piecewise linear vector fields, then the number of fold points
for each vector field Z+

ε and Z−ε is at most one. Therefore, the system can have at most one
sliding/escaping limit cycle.

Theorem B. Suppose Zε(x, y) is a piecewise linear vector field with two zones separated by
the straight line x = 0 such that hypotheses (H1), (H2) and (H3) are satisfied by Z0. Without
loss of generality, assume that Zε writes as (2).

(1) Additionally, suppose that b−11 = −b−22, bv−1 + v+1 < 0 and 0 < a < d+ be. Then, the
following statements hold.

(a) If 0 < c−11 + c−22 <
(v−1 b+ v+1 )2

2b2e2π
then system Zε admits a sliding cycle of Type

I.

(b) If
(v−1 b+ v+1 )2

2b2e2π
< c−11 + c−22 <

2(v−1 b+ v+1 )2

b2e2π
then system Zε admits a sliding

cycle of Type II.

(2) Conversely, suppose that b−11 = −b−22, bv−1 + v+1 > 0, a < 0 and 0 < d+ be. Then, the
following statements hold.



6 J. L. CARDOSO, J. LLIBRE, , D.D. NOVAES AND D.J. TONON

(a) If − (v−1 b+ v+1 )2

2b2e2π
< c−11 + c−22 < 0 then system Zε admits a escaping cycle of

Type I.

(b) If c−11 + c−22 < −
(v−1 b+ v+1 )2

2b2e2π
then system Zε admits a escaping cycle of Type

II.

Theorem B is proved in Subsection 3.4

1.5. Simultaneity. The next result provides conditions on the parameters of the vector
field Zε for the simultaneous occurrence of crossing and sliding/escaping limit cycles.

Theorem C. Under the assumptions of Theorem B the following statements hold.

(1.a) If 0 < c−11 + c−22 <
(v−1 b+ v+1 )2

2πb2e2
then Zε possesses a sliding limit cycle of type I and

at most one more crossing limit cycle.

(1.b) If
(v−1 b+ v+1 )2

2b2e2π
< c−11 + c−22 <

2(v−1 b+ v+1 )2

b2e2π
then Zε possesses a sliding limit cycle

of type II and at most one more crossing limit cycle.

(2.a) If − (v−1 b+ v+1 )2

2b2e2π
< c−11 + c−22 < 0 then Zε possesses a escaping limit cycle of type I

and at most one more crossing limit cycle.

(2.b) If c−11 + c−22 < −
(v−1 b+ v+1 )2

2b2e2π
then Zε possesses a escaping limit cycle of type II and

at most one more crossing limit cycle.

Moreover, there exist parameters of Zε for which the above crossing limit cycle exists, see
Figure 3.

Theorem C is proved in Subsection 3.5.

yf1

yf2

yf1

yf2

Σ Σ

Figure 3. Simultaneous occurrence of crossing and sliding limit cycles for
a 2-order linear perturbation of a piecewise linear center.

This paper is organized as follows. In Section 2 we provide some preliminary results.
Section 3 is devoted to the proofs of our main results. Finally, in Section 4 we present
some examples of piecewise linear vector fields for which the upper bounds of crossing and
sliding/escaping limit cycles are reached.



7

2. Preliminaries

This section is devoted to present some basic notions on nonsmooth vector fields and
all the tools needed to prove our main results. Firstly, we introduce the concept of Fil-
ippov system. Then, some results on extended Chebyshev systems are presented. This
results are important to bound the number of limit cycles. Finally, we discuss the Bendixon
transformation which allows the study of the stability of the infinity.

2.1. Filippov’s convention. Let h : R2 → R a differentiable function for which 0 is a
regular value. Consider the piecewise smooth vector field

Z(x, y) =





Z+(x, y), h(x, y) > 0

Z−(x, y), h(x, y) < 0.

The switching manifold is given by Σ = h−1(0). Notice that h(x, y) = x for system (1).
Consider the Lie’s derivative Z±h(p) = 〈Z±,∇h〉, where 〈·, ·〉 is the canonical inner product
in R2. Then, according to Filippov’s conventions (see [20]), the following regions on Σ
are distinguished: Crossing Region: Σc = {p ∈ Σ; (Z+h)(p).(Z−h)(p) > 0}.; Sliding
Region: Σs = {p ∈ Σ; (Z+h)(p) < 0, (Z−h)(p) > 0}; and Escaping Region: Σe = {p ∈
Σ; (Z+h)(p) > 0, (Z−h)(p) < 0}. The local trajectories of the points in Σs ∪ Σe follow the
so called sliding vector field

(3) Zs =
Z−h · Z+ − Z+h · Z−

Z−h− Z+h
.

Then, the flow of Z is obtained by the concatenation of flows of Z+, Z−, and Zs.

We say that p ∈ Σ is a fold point of Z± when Z±h(p) = 0 and (Z±)2h(p) = Z±.(Z±h)(p) 6=
0. Moreover, p is called a visible (resp. invisible) fold point of Z± if Z±h(p) = 0 and
(Z±)2h(p) ≷ 0 (resp. (Z±)2h(p) ≶ 0).

Remark 1. Assuming that p0 ∈ Σc is an invisible fold point for both vector fields Z+ and
Z−, a first return map is well defined in a neighborhood of p0. Indeed, from the Implicit
Function Theorem, there exists a neighborhood U of p0 such that for each p ∈ U ∩ Σ,
there exists a smallest positive time t(p) > 0 such that the trajectory t 7→ φZ+(t, p) of Z+

through p intercepts Σ at a point p̃ = φZ+(t(p), p). Then, define the positive half-return map
associated to Z+ by γZ+ : (R, 0) → (R, 0) where γZ+(p) = p̃. Analogously, we define the
positive half-return map associated to Z− by γZ− : (R, 0) → (R, 0). Thus, the first return
map ϕZ : (Σ, 0)→ (Σ, 0) is defined by the composition ϕZ = γZ− ◦ γZ+ .

2.2. Extended Chebyshev systems. An ordered set of complex–valued functions F =
(g0, g1, . . . , gk) defined on a proper real interval I is an Extended Chebyshev system or ET–
system on I if and only if any nontrivial linear combination of functions in F has at most k
zeros counting multiplicities. The set F is an Extended Complete Chebyshev system or an
ECT–system on I if and only if for any s ∈ {0, 1, . . . , k} we have that (g0, g1, . . . , gs) is an
ET–system. For more details see the book of Karlin and Studden [11].

In order to prove that F is an ECT–system on I it is necessary and sufficient to show
that W (g0, g1, . . . , gs)(t) 6= 0 on I for 0 ≤ s ≤ k, where W (g0, g1, . . . , gs)(t) denotes the
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Wronskian of the functions (g0, g1, . . . , gs) with respect to the variable t. That is,

W (g0, . . . , gs)(t) = det




g0(t) · · · gs(t)

g′0(t) · · · g′s(t)
...

. . .
...

g
(s)
0 (t) · · · g

(s)
s (t)



.

In [21], the authors proved the following results:

Theorem 2 ([21]). Let F = [g0, g1, . . . , gn] be an ordered set of C∞ functions gj : [a, b]→ R
for j = 0, 1, . . . , n such that there exists ξ ∈ (a, b) with W (g0, g1, . . . , gn−1)(ξ) = Wn−1(ξ) 6=
0. Then, the following statements hold.

(a) If Wn(ξ) 6= 0, then for each configuration of m ≤ n zeros, taking into account their
multiplicity, there exists f ∈ Span(F) with this configuration of zeros.

(b) If Wn(ξ) = 0 and W ′n(ξ) 6= 0, then for each configuration of m ≤ n+ 1 zeros, taking
into account their multiplicity, there exists f ∈ Span(F) with this configuration of
zeros.

Corollary 3 ([21]). Let F = [g0, g1, . . . , gn] be an ordered set of C∞ functions gj : [a, b]→ R
for j = 0, 1, . . . , n. Assume that all the Wronskians are nonvanishing except Wn(x), which
has exactly one zero on (a, b) and this zero is simple. Then, Z(F) = n + 1 and for any
configuration of m ≤ n+ 1 zeros there exists an element in Span(F) realizing it.

2.3. The Bendixson transformation. The Bendixson transformation is a useful tool to
analyze the stability of the infinity of planar vector fields. In what follows, following [8, 15],
we shall discuss this transformation. Consider the differential systems

(4) ẋ = f(x, y, ε), ẏ = g(x, y, ε),

where f, g are Lipschitz functions in the variables (x, y) and ε > 0 is a small parameter.
Applying to system (4) the Bendixson transformation defined as

(5)


 u

v


 =

1

x2 + y2


 x

y


 ,

we obtain an equivalent system whose local phase portrait at the origin is equivalent to the
local phase portrait of system (4) in a neighborhood of the infinity.

Composing the Bendixson change of variables (5) with the polar coordinates u = r cos θ,
v = r sin θ, we get the polar Bendixson transformation x = (cos θ)/r, y = (sin θ)/r. Applying
this last transformation, system (4) becomes

(6)

ṙ = R(r, θ, ε) = −r2
[
f

(
cos θ

r
,

sin θ

r
, ε

)
cos θ + g

(
cos θ

r
,

sin θ

r
, ε

)
sin θ

]
,

θ̇ = ξ(r, θ, ε) = −r
[
f

(
cos θ

r
,

sin θ

r
, ε

)
cos θ − g

(
cos θ

r
,

sin θ

r
, ε

)
cos θ

]
.

We shall study the flow of system (6) contained in the half-cylinder R+×S1 = {(r, θ) : r ≥ 0,
θ ∈ (−π, π)}. Notice that after multiplying (6) by a power of r, the system can be extended
for r = 0. Therefore, the existence of a periodic orbit at infinity for system (4) is equivalent
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to the existence of the periodic orbit r = 0 for system (6) on the cylinder. Now, consider
the assumptions:

(a) the functions R and ξ are Lipschitz functions in the variable r and they have period
2π in the variable θ.

(b) R(0, θ, ε) = 0 and ξ(0, θ, ε) 6= 0 for all θ ∈ S1 and for every ε ≥ 0 sufficiently small.

Notice that (a) and (b) are sufficient and necessary conditions in order to guarantee that
system (4) has a periodic solution at infinity. Finally, taking θ as the new independent
variable the differential system (6) can be written as the first order differential equation

(7) r′ =
dr

dθ
= S(r, θ, ε) =

R(r, θ, ε)

ξ(r, θ, ε)
.

Consequently, the Poincaré map defined on a neighborhood of r = 0 is given by Π(ρ) =
r(2π, ρ, ε), where r(θ, ρ, ε) is the solution of (7) such that r(0, ρ, ε) = ρ.

3. Proof of the main results

In this section we provide the proofs of Proposition 1 and Theorems A, B and C.

3.1. Proof of Proposition 1. We assume that the piecewise linear vector field W0(x, y)
satisfies the hypotheses (H1), (H2) and (H3). Then, the left and right linear differential
systems are written as (ẋ, ẏ) = M±0 (x, y) + (0, u±2 )T , where

M±0 =


 m±11 m±12

m±21 −m±11


 ,

with (m±11)2 +m±12m
±
21 < 0 and m±12 6= 0.

Then, applying the change of variables (x̃, ỹ) = ψ(x, y) = (x,−m−11x −m−12y) we obtain
the following piecewise linear differential system

(8)


 x̃′

ỹ′


 =





Ã+


 x̃

ỹ


+


 0

−m+
12u

+
2


 if x̃ ≥ 0,

Ã−


 x̃

ỹ


+


 0

−m+
12u
−
2


 if x̃ ≤ 0,

where

Ã+ =




m+
11 −

m−11m
+
12

m−12
−m

+
12

m−12
(m−1 )2m+

12

m−12
− 2m−11m

+
11 −m−12m+

21

m−11m
+
12

m−12
−m+

11




and

Ã− =


 0 −1

−(m−11)2 −m−12m−21 0


 .

Notice that the above change of variables fixes the switching manifold.
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Now, let ρ =
√
|(m−11)2 +m−12m

−
21|, where (m−11)2 + m−12m

−
21 < 0. Proceeding with the

following change of variables and rescaling of time

(x̃, ỹ, t̃) 7→
(
x

ρ
, y,

t

ρ

)

system (8) becomes

Z−0 (x, ỹ) =


 0 −1

1 0




 x

ỹ


+


 0

e


 , for x ≤ 0

and

Z+
0 (x, ỹ) =


 a b

c −a




 x

ỹ


+


 0

d


 , for x ≥ 0,

where

a =
1

ρ

(
m+

11 −
m−11m

+
12

m−12

)
,

b = −m
+
12

m−12
,

c =
1

ρ2

( (m−11)2m+
12

m−12
− 2m−11m

+
11 −m+

12m
+
21

)
,

d = −m
+
12u

+
2

ρ
and

e = −m
−
12u
−
2

ρ
> 0.

The singular points of Z−0 , Z
+
0 are given by p− = (−e, 0) and p+ =

d

a2 + bc
(−b, a), resp..

From (H1), (H2) and (H3) we conclude that b < 0, c > 0, d > 0, e > 0 and a2 + bc < 0. �

3.2. Study of the infinity. Applying the Bendixson change of coordinates given in (2) to
Zε, we obtain that the differential system in Σ− can be written

du−

dt
= −v(2eu+ 1)

(
u2 + v2

)
+ ε
(
− u3(v−1 u+ b−11) + v−1 v

4 + uv2(b−11 − 2b−22)

−u2v(a2 + 2(v−2 u+ b−21)) + v3(a2 − 2v−2 u)
)∣∣∣
u=u−,v=v−

,

dv−

dt
= eu4 − ev4 + u3 + uv2 + ε

(
u2v(−2v−1 u− 2b−11 + b−22)− v3(2v−1 u+ b−22)

−uv2(2a2 + b−21) + u3(v−2 u+ b−21)− v−2 v4
)∣∣∣
u=u−,v=v−

,
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and for the differential system in Σ+ can be written as

du+

dt
= −au3 + 3auv2 − u2v(b+ 2(c+ du)) + v3(b− 2du) + ε

(
− u3(v+1 u+ b+11)

+v+1 v
4 + uv2(b+11 − 2b+22)− u2v(c2 + 2(d0u+ d1)) + v3(c2 − 2d0u)

)∣∣∣
u=u+,v=v+

,

dv+

dt
= −3au2v + av3 − uv2(2b+ c) + u3(c+ du) + ε

(
u2v(−2v+1 u− 2b+11 + b+22)

−v3(2v+1 u+ b+22)− uv2(2c2 + d1) + u3(d0u+ d1)− d0v4
)
− dv4

∣∣∣
u=u+,v=v+

.

Applying the polar change of coordinates the left differential system can be written as

dr−

dt
= −er2 sin θ − rε

(
cos θ(v−1 r + (a2 + b−21) sin θ) + b−11 cos2 θ

+ sin θ(v−2 r + b−22 sin θ)
)∣∣∣
r=r−,θ=θ−

,

dθ−

dt
= 1 + er cos θ + ε

(
− sin θ(v−1 r + a2 sin θ) + cos θ((b−22 − b−11) sin θ

+v−2 r) + b−21 cos2 θ
)∣∣∣
r=r−,θ=θ−

,

and, similarly, the right differential system can be written as

dr+

dt
= −r(a cos(2θ) + sin θ((b+ c) cos θ + dr))− rε

(
cos θ(v+1 r

+(c2 + d1) sin θ) + b+11 cos2 θ + sin θ(d0r + b+22 sin θ)
)∣∣∣
r=r+,θ=θ+

,

dθ+

dt
= cos θ(dr − 2a sin θ)− b sin2 θ + c cos2 θ + ε

(
− sin θ(v+1 r + c2 sin θ)

+ cos θ((b+22 − b+11) sin θ + d0r) + d1 cos2 θ
)∣∣∣
r=r+,θ=θ+

.

Considering the rescaling of the radius given by r±t = ε3ρ±t and taking θ− as the new
independent variable we obtain

dρ−

dθ−
= −ερ

(
b−11 cos2 θ + (a2 + b−21) sin θ cos θ + b−22 sin2(θ)

)

+ε2ρ
(

(b−22 − b−11) sin θ cos θ − a2 sin2 θ + b−21 cos2 θ
)

(
b−11 cos2 θ + (a2 + b−21) sin θ cos θ + b−22 sin2 θ

)
+O(ε3)

∣∣∣
ρ=ρ−,θ=θ−

,

and

dρ+

dθ+
=

ρ(2a cos(2θ) + (b+ c) sin(2θ))

2
(
a sin(2θ) + b sin2 θ − c cos2 θ

) − ε ρ

2
(
a sin(2θ) + b sin2 θ − c cos2 θ

)2
(
− sin(2θ)(a(b+11 + b+22) + bd1 − cc2) + cos(2θ)(ac2 − ad1 + bb+22 + cb+11)

−ac2 − ad1 − bb+22 + cb+11

)
+O(ε2)

∣∣∣
ρ=ρ+,θ=θ+

.
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Let ρ∓(θ) = ρ∓0 (θ) + ερ∓1 (θ) +O(ε2) be the solution of
dρ∓

dθ∓
satisfying the initial condition

ρ±
(
−π

2

)
= ρ0. So, we have

ρ−0 (θ) = ρ0,

ρ+0 (θ) =
ρ0√

2

(√2a sin(2θ)− (b+ c) cos(2θ) + b− c
b

)
,

ρ−1 (θ) =
ρ0
4

(−2b−11θ − b−11 sin(2θ) + πb−11 + a2 cos(2θ) + a2 + b−21 cos(2θ) + b−21 − 2b−22θ

+b−22 sin(2θ) + πb−22),

ρ+1 (θ) = − ρ0

4bξ
√
−2b

√
−2a sin(2θ) + (b+ c) cos(2θ)− b+ c

(
2b(b+11 + b+22) arctan

(a
ξ

+
b tan θ

ξ

)
(−2a sin(2θ) + (b+ c) cos(2θ)− b+ c) + 2 sin(2θ)(πab(b+11 + b+22)

+2ac2ξ + bξ(b+22 − b+11))− cos(2θ)(πb(b+ c)(b+11 + b+22) + 2ξ(cc2 − bd1))

+πb(b− c)(b+11 + b+22) + 2bd1ξ − 2cc2ξ
)
,

where a2 + bc = −ξ2, with ξ > 0. Therefore, the displacement map writes

ρ(ρ0) = ρ+0 (π/2)− ρ−0 (−3π/2) + ε(ρ+1 (π/2)− ρ−1 (−3π/2)) +O(ε2)

= −1

2
επρ0

(
b−11 + b−22 +

b+11 + b+22
ξ

)
+O(ε2).

Consequently, if ξ(b−11 + b−22) + b+11 + b+22 > 0 (resp. ξ(b−11 + b−22) + b+11 + b+22 < 0), then the
infinity is a stable (resp. unstable) periodic solution.

3.3. Proof of Theorem A. The proof will be split in three steps. In the first one we prove
that the number of crossing limit cycles of Z1,ε(X) is given by the zeros of the first order
Melnikov function

(9)

M1(y0) =
1

2y0

(
4v−1 y0 − 2(b−11 + b−22)

(
π
(
e2 + y20

)
+ ey0

)

+(b−11 + b−22)
(
e2 + y20

)
arccos

(
2e2

e2+y20
− 1
)

− 1

bξ3

(
− 2bdy0ξ(b

+
11 + b+22)− 4v+1 y0ξ

3 + b(b+11 + b+22)
(
d2 + y20ξ

2
)

arccos
(

2d2

d2+y20ξ
2 − 1

)))
,

were the Melnikov Function is given by

M(y0, ε) = M0(y0) +M1(y0)ε+M2(y0)ε2 +O(ε)3

and Mi(y0) = M−i (y0)−M+
i (y0) for i = 0, 1, 2.
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In the second one we prove that the upper bound of the number of zeros is three, and
that this number is reached. Finally, in the third step we study the stability of the crossing
limit cycles.

Lemma 4. The zeros of M1(y0) correspond to crossing limit cycles for Z1,ε(X).

Proof. Let Zε be given by (2). From hypotheses we know that b < 0, d > 0 and a2 + bc < 0.
So, denote a2 + bc = −ξ2, ξ > 0. Let (x±ε (t), y±ε (t)) be the trajectories of the linear vector
fields Z±0 satisfying x−ε (0) = 0, y−ε (0) = y0 > 0, and x+ε (0) = 0, y+ε (0) = y1. So, for ε = 0,
we compute

(10)
x−0 (t) = e(−1 + cos t)− y0 sin t,

y−0 (t) = y0 cos t+ e sin t,

and

(11)

x+0 (s) =
b(d− d cos(sξ) + y1ξ sin(sξ))

ξ2
,

y+0 (s) =
1

ξ2

(
− d+

(
d+ y1ξ

2
)

cos(sξ) + ξ(d− y1) sin(sξ)
)
.

Let tl,ε > 0 and tr,ε < 0 be the first return times to Σ of the above solutions, that is
x−ε (tl) = x+ε (tr) = 0. For ε = 0 we have

tl0 = 2π − arccos
( 2e2

e2 + y20
− 1
)

and

tr0 = −1

ξ
arccos

(
2d2

d2 + ξ2y21
− 1

)
.

Writing tl,ε = tl0 + tl1ε+O(ε2) and tr,ε = tr0 + tr1ε+O(ε2), the coefficients tl1 and tr1 can
be computed by expanding the equations x−ε (tl) = 0 and x+ε (tr) = 0 around ε = 0. So

tl1 =
1

2y0

(
e2 + y20

)
(

2y0(2v−1 e− e(e(b−11 + b−22) + y0(b−21 − a2)) + 2v−2 y0)− 2π
(
e2 + y20

)
(e(b−11

+b−22) + y0(b−21 − a2)) +
(
e2 + y20

)
arccos

(
2e2

e2+y20
− 1
)

(e(b−11 + b−22) + y0(b−21 − a2))
)
,

and

tr1 =
1

2by1ξ3
(
d2 + y21ξ

2
)
(
− 2dy1ξ

(
y1

(
a2c2 + ab(b+22 − b+11)− b2d1

)
+ bd(b+11 + b+22)

)

+2y1ξ
3(2av+1 y1 + 2bd0y1 − 2v+1 d− c2dy1) +

(
c2y1

(
a2 + ξ2

)
+ b(−ab+11y1 + ab+22y1

+b+11d+ db+22)− b2d1y1
)(
d2 + y21ξ

2
)

arccos
( 2d2

d2 + y21ξ
2
− 1
))
.

Replacing the expression of tl0 and tl1 in the expansion of the solution of (10) we get the
positive half return map in Σ−, i.e.

M−1 =
4v−1 y0 − 2(b−11 + b−22)

(
πe2 + ey0 + πy20

)
+ (b−11 + b−22)

(
e2 + y20

)
arccos

(
2e2

e2+y20
− 1
)

2y0
.
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Analogously, replacing the expressions of tr0 and tr1 in the expansion of the solution of (11)
we obtain the negative half return map in Σ+, namely

M+
1 =

b(b+11 + b+22)
(
d2 + ξ2y21

)
arccos

(
2d2

d2+ξ2y21
− 1
)
− 2bdξy1(b+11 + b+22)− 4v+1 ξ

3y1

2bξ3y1
.

The difference between M−1 and M+
1 provides the first order Melnikov function M1(y0) =

M−1 (y0) −M+
1 (y0) given in (9), and the simple zeros of M1(y0) provide the crossing limit

cycles of Z1,ε(X). �

Lemma 5. The function M1 presented in (9) has at most three simple zeros. Furthermore,
this upper bound is reached.

Proof. Considering the change of coordinates and parameters given by y0 = αs0/ξ, e = α/ξ
and d = αβ in the function M1, given in (9), we obtain

M1(s0) = − 1

2bβs0ξ2

(
− 4βs0ξ

2(v−1 b+ v+1 )− 2αbβ2s0(b+11 + b+22) + αbξ(b−11 + b−22)
(
πβ2s20

+2βs0 + π
)

+ αbξ(b−11 + b−22)
(
β2s20 + 1

)
arccos

(
1− 2

β2s20 + 1

)
+ αbβ2

(
s20 + 1

)

(b+11 + b+22) arccos
( 2

s20 + 1
− 1
))
.

The positive zeros of M1(s0) coincide with the zeros of 2bβs0ξ
2M1(s0) = M̃1(s0). We have

that

M̃1(s0) = 2αbβ2s0(b+11 + b+22) + 4βs0ξ
2(v−1 b+ v+1 )− αbξ(b−11 + b−22)

(
πβ2s20 + 2βs0 + π

)

−αbξ(b−11 + b−22)
(
β2s20 + 1

)
arccos

(
1− 2

β2s20 + 1

)
− αbβ2

(
s20 + 1

)
(b+11 + b+22)

arccos
( 2

s20 + 1
− 1
)
.

If

K0 = 2β
(

2ξ2(v−1 b+ v+1 )− αbξ(b−11 + b−22) + αbβ(b+11 + b+22)
)
,

K1 = αbξ(b−11 + b−22),

K2 = −bαβ2(b+11 + b+22),

then M̃1 can be rewritten as

M̃1(s0) = K0s0+K1

(
β2s20+1

)(
arccos

( 2

β2s20 + 1
−1
)
−2π

)
+K2

(
s20+1

)
arccos

( 2

s20 + 1
−1
)
.

Note that M̃1(s0) is the linear combination

M̃1(s0) = K0f0(s0)− 2πK1f1(s0) +K2f2(s0) +K1f3(s0)
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of the functions

f0(s0) = g0

f1(s0) = 1 + β2s20

f2(s0) =
(
s20 + 1

)
arccos

(
2

s20 + 1
− 1

)

f3(s0) = (β2s20 + 1) arccos
( 2

β2s20 + 1
− 1
)
.

Denoting Wk(s0) = Wk(f0, f1, ..., fk)(s0), we have

W0(s0) = s0

W1(s0) = β2s20 − 1

W2(s0) = 2
(
β2 − 1

)
arccos

(
2

s20 + 1
− 1

)
− 4

(
β2 + 1

)
s0

s20 + 1

W3(s0) =

16β3
(
β2 − 1

)(
2s0

(
s20 − 1

)
+
(
s20 + 1

)2
arccos

(
2

s20 + 1
− 1

))

(s20 + 1)
2

(β2s20 + 1)
2 .

Observe that the functions Wk(s0) for k = 0, 1, 2, 3 have not roots if s0 > 1/β. In fact, we
have that

W3(s0)
(
β2s20 + 1

)2
= W̃3(s0),

where

W̃3(s0) =

16β3
(
β2 − 1

)(
2s0

(
s20 − 1

)
+
(
s20 + 1

)2
arccos

(
2

s20 + 1
− 1

))

(s20 + 1)
2 .

Computing the derivative of W̃3(s0) we have

dW̃3

ds0
=

256β3
(
β2 − 1

)
s20

(s20 + 1)
3 ,

which is strictly positive for all s0 6= 0 and β > 1, and strictly negative for all s0 6= 0 and

0 < β < 1. Therefore, since lims0→0 W̃3(s0) = 0 and lims0→∞ W̃3(s0) = 0, the function W̃3

has no roots for s0 > 0. Hence, the function W3 has no roots if s0 > 0 and β 6= 1.

In summary, the ordered set F = [f0, f1, f2, f3] is an ET-Chebyschev System. By Theorem
2 we conclude that there exists a linear combination of the functions of F with at most three
roots. So, the upper bound for the number of zeros of any function in the linear space of
functions generated by the functions of F is three. In Example 4.1 of Section 4 we show
that this upper bound for the zeros is reached. �

Lemma 6. The highest amplitude limit cycle (when it exists) is stable (resp. unstable)
provided that ξ(b−11 + b−22) + b+11 + b+22 < 0 (resp. ξ(b−11 + b−22) + b+11 + b+22 > 0). The lowest
amplitude limit cycle (when it exists) is stable (resp. unstable) provided that b−11 + b−22 < 0
or b−11 + b−22 = 0 and bv−1 + v+1 > 0 (resp. b−11 + b−22 > 0 or b−11 + b−22 = 0 and bv−1 + v+1 < 0).
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Proof. In what follows we study the stability of the crossing limit cycles. In fact, this
stability depends of the sign of M1. Indeed, M1(y0) = M−1 (y0)−M+

1 (y0), let y∗0 ∈ R+ such
that M1(y0) = 0, if M1(y0) > 0 for y0 < y∗0 and M1(y0) < 0 for y0 > y∗0 , then the crossing
limit cycle defined by y0 is unstable. If these signs are reversed then it is stable.

We get that

lim
s0→0

M̃1(s0) = −2παbξ(b−11 + b−22), and lim
s0→∞

M1(s0) = ξ(b−11 + b−22) + b+11 + b+22.

Therefore, since b < 0, α > 0 and ξ > 0 the sign
(

lim
s0→0

M̃1(s0)
)

= sign(b−11 + b−22), and

2bβs0ξ
2m−11(s0) = M̃1(s0) so sign

(
lim
s0→0

M1(s0)
)

= −sign(b−11 + b−22), see Figure 4. So, the

lemma follows. �

1 2 3 4 5

- 0.05

0.05

0.10

0.15

0.20

Σ

y∗0

Figure 4. The repealer crossing limit cycle and the graphic of M1(y0)
1-order linear perturbation of a piecewise linear center.

Now, we complete the proof of Theorem A analyzing the stability of the crossing limit
cycles and of the periodic orbit at infinity. In fact, the stability of the periodic orbit at
infinity is given by sign(ξ(b−11 + b−22) + b+11 + b+22), see Section 3.2, and the stability of the
crossing limit cycle (c.l.c.) of the biggest amplitude limit cycle is given in Table 1.

sign(ξ(b−11 + b−22) + b+11 + b+22) stability of the bigger c.l.c stability of ∞

−1 stable unstable

1 unstable stable

Table 1. Stability of the highest amplitude crossing limit cycle and the infinity.

3.4. Proof of Theorem B. In order to study the sliding/escaping limit cycle we consider
the second order linear perturbation of the vector field Z given in (2). The singular points
and the spectrum of the systems in Σ− and Σ+ are given by p− = (−e, 0) and p+ =
(−bd/(a2+bc),−d/(a2+bc)), respectively; and the eigenvalues of the unperturbed piecewise
linear vector field Z2,0(X) in Σ− and Σ+ are given by Spec− = {i,−i} and Spec+ =
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{
−
√
a2 + bc,

√
a2 + bc

}
, respectively. Consider Zε given in (2) and assume that b−11 = −b−22,

the fold point in Σ− and Σ+ are given by

yf1 = v−1 ε+ (A0 + v−1 a2)ε2 +O(ε3) and

yf2 = −v
+
1 ε

b
+

(−bC0 + v+1 c2)ε2

b2
+O(ε3),

respectively. Under the assumptions e > 0 and db < 0 we get that yf1 is a visible fold point

and yf2 is an invisible fold point. Assuming that v−1 > −v
+
1

b
we have that yf1 is over of yf2

and by (3) the expression of the sliding vector fields is

Zsε (0, y) = y(ay − be− d) + ε(v−1 (d− ay)− y(y(aa2 + bb−22 + b+22)− a2d+ bv−2 + c2e+ d0)

−v+1 e) + ε2
(
− y(aA0 − v−1 b+22 − a2d0 −A2d+ bw−2 + v−2 c2 + b−22v

+
1 + C2e

+D0) + y2(−(aA2 − a2b+22 + bc−22 + b−22c2 +D2)) + v−1 d0 +A0d− v−2 v+1 − C0e
)
.

Any point in the sliding region is given as a convex combination of yf1 and yf2 as follows

ys(λ) = (1− λ)yf1 + λyf2 = ε
(
v−1 − v−1 λ−

v+1 λ

b

)
,

where 0 < λ < 1. A necessary condition for the existence of a sliding/escaping limit
cycle is that the sliding vector field is regular and points toward the visible fold point yf1.
The pseudo-equilibrium is (0, y∗) with y∗ = (d + be)/a, which is reached when λ = λ∗ =
−b(d + be)/(a(v−1 b + v+1 )ε). Under the hypotheses a < 0 and d + be > 0, we obtain that
(0, y∗) /∈ Σs, i.e., Zsε is regular. The direction of the sliding vector field is given by the sign
of the derivative of Zsε evaluated at ys, that is by (v−1 b+ v+1 )(be+ d)/b. From assumptions
(d + be) > 0 and (v−1 b + v+1 ) < 0 ((v−1 b + v+1 ) > 0 resp.), we conclude that the sliding
(escaping resp.) vector field points towards yf1 (yf2 resp.).

In what follows we study the return maps passing through the fold point of Z+
ε and

Z−ε . Our goal is to provide an order relation between the images by the flow of the fold
points in a transverse section through yf1. This analysis not only provides a necessary
condition for the existence of a sliding/escaping limit cycle, but also provides its distinct
topological type. The negative half return map in a neighborhood of the invisible fold point
yf2 defines the involution γZ+

ε
: I− → I+, where I+, I− is an open interval above, below,

resp., of yf2. For more details about the construction of this involution, see [19]. In this

way, we have that γ−1
Z+

ε
(yf1) = yf3 ∈ I−. The line {(x, y);x = 0} is tangent to the fold

points. Therefore we cannot use the Implicit Function Theorem in this case. However,
we can obtain a condition for the existence of a sliding/escaping limit cycle studying the
intersection of the trajectories of Zε in Σ− with initial conditions at yf1, yf2 and yf3 with
the line Λ = {(x, y);x ≤ 0, y = yf1} ⊂ Σ−, which is a transversal section at the fold point
yf1. Considering the smooth vector field Z−ε and the initial conditions (0, yf1), (0, yf2) and
(0, yf3) the intersection of the flow of Z−ε with Λ define the return maps S0(ε), S1(ε), S2(ε)
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and S3(ε), respectively, given by

S0(ε) = −2e+ ε(2b−21e− 2v−2 ) + ε2
(1

2
πe(c−11 + c−22)− 2

(
v−1 b

−
22 − v−2 b−21 + w−2

+(b−21)2e− c−21e
))

+O(ε3),

S1(ε) = −2e+ ε(2b−21e− 2v−2 ) + ε2
(
− 2
(
v−1 b

−
22 − v−2 b−21 + w−2 + (b−21)2e− c−21e

)

−1

2
πe(c−11 + c−22)

)
+O(ε3),

S2(ε) = −2e+ ε(2b−21e− 2v−2 )− ε2

2b2e

(
(v−1 )2b2 + 2v−1 b(2bb

−
22e+ v+1 ) + b2e

(
4
(
− v−2 b−21

+w−2 + (b−21)2e− c−21e
)
− πe(c−11 + c−22)

)
+ (v+1 )2

)
+O(ε3),

S3(ε) = −2e+ ε(2b−21e− 2v−2 ) +
ε2

2b2e

(
− 4b2e(v−1 b

−
22 − v−2 b−21 + w−2 )− 4(v−1 b+ v+1 )2

+πb2e2(c−11 + c−22) + 4b2e2
(
c−21 − (b−21)2

))
+O(ε3).

By hypothesis

(1− a) If 0 < c−11 + c−22 < (v−1 b + v+1 )2/(2b2e2π), then S3 < S2 < S1 < S0 and system Zε
admits a sliding cycle of Type I.

(1− b) If (v−1 b+ v+1 )2)/(2b2e2π) < c−11 + c−22 < 2(v−1 b+ v+1 )2/(b2e2π), then S3 < S1 < S2 <
S0, and system Zε admits a sliding cycle of Type II.

yf1

yf2

yf3
Σ

S3 S1 S2 S0

Λ

Figure 5. The point yf3 and the return maps S0(ε), S1(ε), S2(ε) and S3(ε).

Working similarly and assuming that a < 0, d + be > 0 and v−1 b + v+1 > 0 we can conclude
that

(2− a) If −(v−1 b+ v+1 )2)/(2b2e2π) < c−11 + c−22 < 0, then system Zε admits a escaping cycle
of Type I.

(2− b) If c−11 + c−22 < −(v−1 b + v+1 )2)/(2b2e2π), then system Zε admits a escaping cycle of
Type II.

This completes the proof of Theorem B.
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3.5. Proof of Theorem C. We divide the proof in two steps. In the first we provide an
upper bound for the number of crossing limit cycles, and in the second we study the stability
of these limit cycles.

Lemma 7. Assuming that b−11 = −b−22 the function M1, given in (9), has at most one simple
zero. Moreover, there exists choice of parameters for which this upper bound is reached.

Proof. Consider M1(y0) given in (9) and assume that b−11 = −b−22, then we obtain

(12) M1(y0) = 2v−1 +
2v+1
b

+
d(b+11 + b+22)

ξ2
−

(b+11 + b+22)
(
d2 + ξ2y20

)
arccos

(
2d2

d2+ξ2y20
− 1
)

2y0ξ3
.

Proceeding with the change of coordinates y0 = ds0/ξ and writing k0 = 2v−1 + 2v+1 /b +
d(b+11 + b+22)/ξ2 and k1 = −d(b+11 + b+22)/(2ξ2) we get

d

ξ
s0M1(s0) = k0s0 + k1

(
s20 + 1

)
arccos

(
1− 2

s20 + 1

)
.

So, denoting

f0(s0) = s0

f1(s0) =
(
s20 + 1

)
arccos

(
1− 2

s20 + 1

)
,

and computing their Wronskians we obtain

W (f0)(s0) = 1

W (f0, f1)(s0) = −2s0 + (s20 − 1) arccos

(
1− 2

s20 + 1

)
.

Let W̃1(s0) = W1/(s
2
0 − 1). Therefore

dW̃1

ds0
(s0) = 8s20/(

(
s20 − 1

)2 (
s20 + 1

)
) which is strictly

positive for all s0 > 0. So, W̃1 is strictly increasing and W1 has at most one zero. The
existence of a sliding limit cycle follows from Theorem B. In Example 4.2 we present a
piecewise linear vector field that exhibits a crossing/sliding limit cycle. �

In the previous case the stability of the crossing limit cycle is given by the following result.

Lemma 8. The crossing limit cycle of (2) is unstable (resp. stable) if v−1 +
v+1
b > 0 (resp.

v−1 +
v+1
b < 0).

Proof. The stability of the crossing limit cycle is given by the sign of M1. Indeed, M1(y0) =
M−1 (y0) − M+

1 (y0), let y∗0 ∈ R+ such that M1(y0) = 0, M1(y0) > 0 for y0 < y∗0 , and
M1(y0) < 0 for y0 > y∗0 . Therefore, the crossing limit cycle is unstable. If M1(y0) < 0 for
y0 < y∗0 and M1(y0) > 0 for y0 > y∗0 , then the crossing limit cycle is stble. By (12) we have
that

lim
y0→0+

M1(y0) = 2

(
v−1 +

v+1
b

)
.

So, the lemma follows. �
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4. Final remarks and some examples

In this section we provide two examples of piecewise linear vector fields, the first one
admitting three crossing limit cycles and the second one with a sliding and a crossing limit
cycle.

4.1. Example 1. Consider the following piecewise linear vector field Z = (Z+, Z−) where

Z−(x, y) =


 0 −1

1 0




 x

y


+


 0

0.55




+ε




 −1 0

0 −1




 x

y


+


 −2.65

0






and

Z+(x, y) =


 1 −1

1.01 −1




 x

y


+


 0

0.1


+ ε




 0.21 0

0 0




 x

y




 .

The first order Melnikov function associated to this system is given by

M1(y0) =
−1

400y0

(
− 242π − 800πy20 + 420

(
y20 + 1

)
arccos

( 2

y20 + 1
− 1
)

+
(

400y20 + 121
)

arccos
( 242

400y20 + 121
− 1
)

+ 840y0

)
,

which has three zeros y0 = 1, y0 = 2 and by the Newton-Kantorovich method, see [2], we have
the third zero in the neighborhood of y0 = 3.82781, see Figure 6. Each zero corresponds to
a crossing limit cycle with alternating stability. In this case, the highest amplitude crossing
limit cycle is unstable and the infinity is stable.

1 2 3 4 5

- 0.05

0.05

0.10

0.15

0.20

Figure 6. Graphic of M1. Each zero correspond to a crossing limit cycle.
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4.2. Example 2. Consider the following piecewise linear vector field Z = (Z+, Z−) where

Z−(x, y) =


 0 −1

1 0




 x

y


+


 0

1


+ ε




 1 0

0 −1




 x

y


+


 0.2

0






+ε2




 0.03 0

0 0.02




 x

y




 ,

Z+(x, y) =


 −1 −1

2 1




 x

y


+


 0

2


+ ε




 1.5 0

0 −0.4




 x

y


+


 −0.5

0




 .

The associated first order Melnikov function is given by

M1(y0) = 2.2−
(

0.1y0 +
1.6

y0

)
arccos

(
8

0.25y20 + 4
− 1

)
.

The graph of M1 is given by Figure 7, the crossing limit cycle is located in a neighborhood
of y0 = 7.94622, is repealer and the infinite is attractor.

1 2 3 4 5

- 6

- 4

- 2

Figure 7. Graphic of M1. The unique zero of M1 correspond to a repealer
crossing limit cycle.
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