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SIMULTANEOUS OCCURRENCE OF SLIDING AND CROSSING LIMIT
CYCLES IN PIECEWISE LINEAR PLANAR VECTOR FIELDS

JOAO L. CARDOSO!, JAUME LLIBRE2?, DOUGLAS D. NOVAES® AND DURVAL J. TONON!

ABSTRACT. In the present study we consider planar piecewise linear vector fields with
two zones separated by the straight line £ = 0. Our goal is to study the existence of
simultaneous crossing and sliding limit cycles for such class of vector fields. First, we
provide a canonical form for these systems assuming that each linear system has center,
a real one for y < 0 and a virtual one for y > 0, and such that the real center is a global
center. Then working with a first order piecewise linear perturbation we obtain piecewise
linear differential systems with three crossing limit cycles. Second, we see that a sliding
cycle can be detected after a second order piecewise linear perturbation. Then imposing
the existence of a sliding limit cycle we prove that only one more crossing limit cycle can
appear. Finally, we also characterize the stability of the higher amplitude limit cycle and
of the infinity. The main techniques used in our proofs are the Melnikov functions, the
Extended Chebyshev systems and the Bendixson transformation.

1. INTRODUCTION AND STATEMENT OF THE MAIN RESULTS

For a given differential system a limit cycle is a periodic orbit isolated in the set of all
periodic orbits of the system. One of the main problems of the qualitative theory of planar
differential systems is determining the existence of limit cycles. A center is a singular point p
that possesses a neighborhood U such that U\ {p} is filled by periodic solutions. A classical
way to produce and study limit cycles is by perturbing the periodic solutions of a center.
This problem has been studied intensively for continuous planar differential systems, see for
instance, [5] and the references therein.

The main objective of this paper is to study the limit cycles that can bifurcate from a
center of a discontinuous piecewise linear differential systems with two zones separated by
the straight line x = 0 when the center is perturbed inside the class of all discontinuous
piecewise linear differential systems with two zones separated by =z = 0.

The study of the piecewise linear differential systems goes back to Andronov and co-
authors [1]. In the present days these systems continue receiving a considerable attention,
mainly due to their applications. Indeed, such systems are widely used to model many
real processes and different modern devices, see for instance the book [3] and the references
therein.

The case of continuous piecewise linear systems with two regions separated by a straight
line is the simplest possible configuration of piecewise linear systems. We note that even in
this simple case, establishing the existence of at most one limit cycles was a difficult task,
see [6], and [12] for a shorter proof. There are two reason for that misleading simplicity of
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piecewise linear systems: First, whereas it is easy to compute the solutions in any linear
region, the time that each orbit requires to pass from one linear region to the other is usually
not computable. Second, the increasing number of parameters.

Discontinuous piecewise linear systems with two regions separated by a straight line have
received a lot of attention during these last years, see for instance [9, 10, 13, 14, 16, 17]
among other papers. In [9], the authors conjectured that piecewise linear systems with two
regions separated by a straight line could have at most two limit cycles. Later on in [10],
the authors provided numerical evidences on the existence of three limit cycles, which was
analytically proved in [16].

In the present study, we consider planar piecewise linear vector fields with two zones
separated by the straight line z = 0. Firstly, we provide a canonical form for these systems
assuming that each linear system has center, a real one for y < 0 and a virtual one for y > 0,
such that the real center is a global center. Then, proceeding with a first order piecewise
linear perturbation, we study the bifurcation of crossing limit cycles. In short, it is shown
that any configuration of 1, 2 or 3 limit cycles can bifurcate from the periodic solutions of
the unperturbed system. We also study the stability of the higher amplitude crossing limit
cycle and the infinity. Secondly, we see that a sliding cycle can be detected after a second
order piecewise linear perturbation. Finally, imposing the existence of a sliding limit cycle
we prove that only one more crossing limit cycle appears.

1.1. Setting the problem. Consider the following planar piecewise linear differential sys-
tems with two zones separated by the straight line ¥ = {(z,y);z = 0}

+
RV R I I TR
& y Uy,
(1) | = Welzy) =
y _| = U, .
M + ’ if <0,
Y Uy o

where MEi is one-parameter family of 2 x 2 real matrices and ufs, ufs € R. Here, the dot
denotes derivative with respect to the time variable t. We define X7 = {(x,y);z > 0} and
¥~ ={(z,y);z < 0} and denote the piecewise linear vector field associated to system (1)
by W. = (W, W), where W and W are defined in X and X7, respectively.

Let p* be the singular points of V[/OlL . We say that a singular point p* of VVOjE is real
(respectively wvirtual) if p™ € {(z,y);z > 0} or p~ € {(z,y);z <0} (respectively if pT €
{(z,y);z <0} or p~ € {(x,y);x > 0}). Assume that system (1) satisfies

(H1) p

(H3) p* is a center for the system W, and p* € ¥~ i.e, p* is a virtual singular point.

(H3) p

~ is a center for the system W, and p~ € X7, i.e, p~ is a real singular point.
~ is global center for the system Wy, see Figure 1.

1.2. Canonical Form. The next result provides a canonical form for the piecewise linear
vector fields (1) having a center and it is proved in Section 3. Fixing ¢ = 0, we denote



Fi1GURE 1. The global center for the system Wj.

Proposition 1. Consider the piecewise linear vector field W.(z,y) given in (1) and as-
sume that We(x,y) satisfies hypotheses (Hy), (Hs) and (Hs). Then, there exists a change of
coordinates (t,x,y) — (t,x,7) where the piecewise linear vector field (1) can be written as
(2", 9" = Z.(z,7), where

T 0
Zg(mg) =At | |+ if x>0,
7 d
ZO(xag) =
R Y 0 .
Zy (zv,9) = A )t if x<0,
7 e
a b 0 -1 1
At = A = with p = \/|(mi)? +myymala = —(mi;
c —a 1 0 P
-+ + 1 =2, + + .4
_mlle)’ b — _m1_27c = = ((mll)_mIQ —ompmd, —m1+2m§“1> d = _Migty
Mg 7 myy P My P
e= _ Moty Furthermore, the parameters of this canonical form satisfy
b<0,c>0,d>0,e>0,a>+bc<0.
In general we can write
(2) ZE(J":y) = ZO(xvy) + EZl(w7y) + 5222(m7y) + 0(63)
where
x
Bt +ot if 2>0,
Yy
Zl(xvy) =
x
B~ +ov- if 2 <0,
Y
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and
T
ct +wt if >0,
Yy
ZQ('ra y) =
x .
c- +w™ if x <0,
Yy
+ + + + + +
with B¥ = b b vE = Y1 c* = ‘i wt = w1 We
o + .+ |’ o + |’ o + £+ | o + |
by by Uy Ca1  Ca2 Wq

denote the piecewise smooth vector field Z. by Z. = (ZF, Z7), where ZZ is defined in ©*.

1.3. Crossing limit cycles. For the piecewise linear differential system (2) we obtain an
upper bound for the number of crossing limit cycles bifurcating from the periodic solutions
of the unperturbed system. We define

2d (£2(2v; b — be(by; + byy) + 2v7) + bd(b); + b35))

KO = €£ 3
K1 = be€?(by; + byy),
K, = PO +bh)

e§
where a? + be = —£2, with € > 0.

Theorem A. Suppose Z.(x,y) is a piecewise linear vector field with two zones separated by
the straight line x = 0 such that hypotheses (H1), (Hz) and (Hs) are satisfied by Zo. Without
loss of generality, assume that Z. writes as (2). Then, the following statements hold.

(a) There exist elections of the parameters Ko, K1, and Ky for which system Z. has any
configuration of 1, 2, or 3 crossing limit cycles taking into account their multiplicity.

(b) The highest amplitude limit cycle (when it exists) and the infinity have opposite
stability. More precisely, the highest amplitude limit cycle is stable (resp. unstable)
and the infinity is an unstable (resp. stable) periodic orbit provided that £(by; +
bys) +bi7 + b3y < 0 (resp. £(byy + bay) + by + b3y > 0).

(¢) The lowest amplitude limit cycle (when it exists) is stable (resp. unstable) provided
that by; + byy < 0, or by + by = 0 and bv; + v > 0 (resp. by; + by, > 0, or
by + b3 =0 and buy + v <0).

Theorem A is proved in Subsection 3.3.

We note that it is well known that piecewise linear differential system with two regions
separated by a straight line can exhibit 3 crossing limit cycles. The first numerical evidence
of that was given in [10] by Huan and Yang. Then, in [16], Llibre and Ponce established an
analytical proof of the existence of 3 limit cycles. After that, many authors have provided
different examples of those systems having 3 limit cycles. For instance, in [4] Buzzi et al.,
using a seventh order piecewise linear perturbation, proved that 3 limit cycles bifurcate
from a linear center. In [13], Llibre et al. proved that 3 limit cycles bifurcates from a



piecewise linear center, but using only a first order piecewise linear perturbation. In the
present paper, Theorem A also guarantees the bifurcation of 3 crossing limit cycles after a
first order perturbation. In the next subsection we shall see that a second order perturbation
allows the study of sliding limit cycles.

1.4. Sliding and escaping limit cycles. We recall that a sliding/escaping limit cycle is
a closed orbit composed by segments of orbits of the sliding vector field Z* (see Subsection
2.1) and ZT and/or Z~. We must mention that this kind of limit cycle has been considered
before, see for instance [7].

Consider a piecewise linear vector field Z and assume that the sliding/escaping region
(see Subsection 2.1) is bounded. A sliding/escaping limit cycle of Z is a closed trajectory
composed by trajectories of the sliding vector field Z*, Z*, and/or Z~. More precisely, we
say that a sliding/escaping limit cycle is: of Type I if it is composed by trajectories of Z*,
and Z or Z=; and of Type ITif it is composed by trajectories of Z*, Z+ and Z, see Figure
2.

DN DI
1 1
1 1
1 1
1 1
J1 Y51
Yr2 Y
1
1 1
1 1
1 1
1 1
Type I Type II

FIGURE 2. Types of sliding limit cycles.

Since we are dealing with piecewise linear vector fields, then the number of fold points
for each vector field Z and Z_ is at most one. Therefore, the system can have at most one
sliding /escaping limit cycle.

Theorem B. Suppose Z.(x,y) is a piecewise linear vector field with two zones separated by
the straight line x = 0 such that hypotheses (H1), (Hz) and (Hs) are satisfied by Zy. Without
loss of generality, assume that Z. writes as (2).

(1) Additionally, suppose that by, = —byy,bvy + v <0 and 0 < a < d+ be. Then, the
following statements hold.
(v b+ v))?

(@) If0 < ¢y + ¢ < ST

I
(v7 b+ v))?
(b) If 2b2e2m

cycle of Type II.

then system Z. admits a sliding cycle of Type

2(vy b+ v)?

< ¢t ey <
11 22 b2e27

then system Z. admits a sliding

(2) Conversely, suppose that by, = —byy, bvy +v; > 0,a <0 and 0 < d+be. Then, the
following statements hold.
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(v b+v)?
2b2e2 7

(a) If —
Type L.

< €y + ¢y < 0 then system Z. admits a escaping cycle of

(v b+ ) )?

(b) If Cl_l + 62_2 < - 2h2e27

1.

then system Z. admits a escaping cycle of Type

Theorem B is proved in Subsection 3.4

1.5. Simultaneity. The next result provides conditions on the parameters of the vector
field Z. for the simultaneous occurrence of crossing and sliding/escaping limit cycles.

Theorem C. Under the assumptions of Theorem B the following statements hold.
_ _ (vib+w])?
(1.0,) [fO < Cqq + Coo < W
at most one more crossing limit cycle.
(vib+of)* 2 b))
0 ey~ < it em < g
of type II and at most one more crossing limit cycle.
(vrb+vf)?
2.a) If ———5—""—
(2.0) If 2b2e2 ‘ ‘
and at most one more crossing limit cycle.
o (v7b+v)?
(2.0) If ey + e < *w
at most one more crossing limit cycle.

then Z. possesses a sliding limit cycle of type I and

then Z. possesses a sliding limit cycle

< 11 + o < 0 then Z, possesses a escaping limit cycle of type I

then Z. possesses a escaping limit cycle of type II and

Moreover, there exist parameters of Z. for which the above crossing limit cycle exists, see
Figure 3.

Theorem C is proved in Subsection 3.5.

DI DI

FIGURE 3. Simultaneous occurrence of crossing and sliding limit cycles for
a 2-order linear perturbation of a piecewise linear center.

This paper is organized as follows. In Section 2 we provide some preliminary results.
Section 3 is devoted to the proofs of our main results. Finally, in Section 4 we present
some examples of piecewise linear vector fields for which the upper bounds of crossing and
sliding/escaping limit cycles are reached.



2. PRELIMINARIES

This section is devoted to present some basic notions on nonsmooth vector fields and
all the tools needed to prove our main results. Firstly, we introduce the concept of Fil-
ippov system. Then, some results on extended Chebyshev systems are presented. This
results are important to bound the number of limit cycles. Finally, we discuss the Bendixon
transformation which allows the study of the stability of the infinity.

2.1. Filippov’s convention. Let h : R?2 — R a differentiable function for which 0 is a
regular value. Consider the piecewise smooth vector field

Zt(x,y), h(z,y)>0

Z(z,y) =
Z=(x,y), h(x,y) <0

The switching manifold is given by ¥ = h~!(0). Notice that h(z,y) = z for system (1).
Consider the Lie’s derivative Z*h(p) = (Z*, Vh), where (-, ) is the canonical inner product
in R2. Then, according to Filippov’s conventions (see [20]), the following regions on ¥
are distinguished: Crossing Region: X¢ = {p € 3;(Z"h)(p).(Z~h)(p) > 0}.; Sliding
Region: X% = {p € %;(ZTh)(p) < 0,(Z~h)(p) > 0}; and Escaping Region: ¥¢ = {p €
¥ (ZTh)(p) > 0,(Z~h)(p) < 0}. The local trajectories of the points in 3* U X¢ follow the
so called sliding vector field

. Zh-Zt—Z%h-Z~
®) z = Z-h—Z*h

Then, the flow of Z is obtained by the concatenation of flows of Z*,Z~, and Z%.

We say that p € ¥ is a fold point of Z* when Z*h(p) = 0 and (Z%)2h(p) = Z*.(Z*h)(p) #
0. Moreover, p is called a visible (resp. invisible) fold point of Z* if Z*h(p) = 0 and
(Z*)*h(p) 2 0 (resp. (Z2*)*h(p) < 0).

Remark 1. Assuming that py € X¢ is an invisible fold point for both vector fields Z+ and
Z~, a first return map is well defined in a neighborhood of py. Indeed, from the Implicit
Function Theorem, there exists a neighborhood U of py such that for each p € U N %,
there exists a smallest positive time t(p) > 0 such that the trajectory t — ¢4+ (t,p) of ZT
through p intercepts ¥ at a point p = ¢z+(t(p),p). Then, define the positive half-return map
associated to ZT by vz+ : (R,0) = (R,0) where yz+(p) = p. Analogously, we define the
positive half-return map associated to Z~ by vz- : (R,0) — (R,0). Thus, the first return
map ¢z : (3,0) = (£,0) is defined by the composition ¢z = yz- 0 yz+.

2.2. Extended Chebyshev systems. An ordered set of complex—valued functions F =
(90,915 - - -, gk) defined on a proper real interval I is an Extended Chebyshev system or ET—
system on [ if and only if any nontrivial linear combination of functions in F has at most k
zeros counting multiplicities. The set F is an Fxtended Complete Chebyshev system or an
ECT-system on [ if and only if for any s € {0,1,...,k} we have that (go,91,...,9s) is an
ET-system. For more details see the book of Karlin and Studden [11].

In order to prove that F is an ECT—system on [ it is necessary and sufficient to show
that W(go,g1,---,9s)(t) # 0 on I for 0 < s < k, where W<(go, g1,--.,9s)(t) denotes the
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Wronskian of the functions (go, g1, - - -, gs) with respect to the variable ¢. That is,

go(t) -+ gs(t)
W(go, ..., gs)(t) = det 96@ s gs(t)
A - O

In [21], the authors proved the following results:

Theorem 2 ([21]). Let F = [go, g1, - - -, gn] be an ordered set of C* functions g; : [a,b] — R
for 3 =0,1,...,n such that there exists & € (a,b) with W(go,g1,--.,9n-1)(&) = Wn_1(§) #
0. Then, the following statements hold.

(a) If Wp(€) # 0, then for each configuration of m < n zeros, taking into account their
multiplicity, there exists f € Span(F) with this configuration of zeros.

(b) If W,(&§) =0 and W) (§) # 0, then for each configuration of m < n+1 zeros, taking
into account their multiplicity, there exists f € Span(F) with this configuration of
zeros.

Corollary 3 ([21]). Let F = [go, 91, - -, gn] be an ordered set of C*° functions g; : [a,b] = R
for j=0,1,...,n. Assume that all the Wronskians are nonvanishing except W, (x), which
has exactly one zero on (a,b) and this zero is simple. Then, Z(F) = n+ 1 and for any
configuration of m < n+ 1 zeros there exists an element in Span(F) realizing it.

2.3. The Bendixson transformation. The Bendixson transformation is a useful tool to
analyze the stability of the infinity of planar vector fields. In what follows, following [8, 15],
we shall discuss this transformation. Consider the differential systems

(4) i‘zf(.%'7y76), yzg(x,y,s),

where f, g are Lipschitz functions in the variables (x,y) and € > 0 is a small parameter.
Applying to system (4) the Bendizson transformation defined as

u 1 x

5 - -
() . $2+y2 y

we obtain an equivalent system whose local phase portrait at the origin is equivalent to the
local phase portrait of system (4) in a neighborhood of the infinity.

Composing the Bendixson change of variables (5) with the polar coordinates u = r cos 6,
v = rsin 6, we get the polar Bendizson transformation x = (cosf)/r, y = (sinf)/r. Applying
this last transformation, system (4) becomes

6 sinf 0 sinf
F= R(r,0,e)= —r? [f (COS ,Sli ,€>COSG+Q<COS ,SH; ,5) sinG},

r T

b= e = —r [f ((}0597 s11;978> cosh— g (cose’ Sl:6a5> COSQ:| .

r T

(6)

We shall study the flow of system (6) contained in the half-cylinder RT xS' = {(r,0) : r > 0,
6 € (—m,m)}. Notice that after multiplying (6) by a power of r, the system can be extended
for r = 0. Therefore, the existence of a periodic orbit at infinity for system (4) is equivalent
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to the existence of the periodic orbit » = 0 for system (6) on the cylinder. Now, consider
the assumptions:

(a) the functions R and £ are Lipschitz functions in the variable r and they have period
27 in the variable 6.
(b) R(0,0,¢) =0 and £(0,0,¢) # 0 for all # € S! and for every € > 0 sufficiently small.

Notice that (a) and (b) are sufficient and necessary conditions in order to guarantee that
system (4) has a periodic solution at infinity. Finally, taking 6 as the new independent

variable the differential system (6) can be written as the first order differential equation
dr R(r,0,¢)

7 =Y g0, e) = DTS

(7) = G = S0 = g

Consequently, the Poincaré map defined on a neighborhood of r = 0 is given by II(p) =
r(2m, p,€), where (0, p,€) is the solution of (7) such that (0, p,e) = p.

3. PROOF OF THE MAIN RESULTS

In this section we provide the proofs of Proposition 1 and Theorems A, B and C.

3.1. Proof of Proposition 1. We assume that the piecewise linear vector field Wy(z,y)
satisfies the hypotheses (Hi), (H3) and (H3z). Then, the left and right linear differential
systems are written as (&,9) = Mg (z,y) + (0,u3)T, where

+ +
ME— mp; My
U + + ’
may my

with (m$;)? +mima < 0 and mi, # 0.

Then, applying the change of variables (Z,§) = ¥ (z,y) = (z, —m;2 — myy) we obtain
the following piecewise linear differential system

. T 0 L
A + - if >0,
i Y —MyolUg
®) L=
] - [z 0 L
A + N if <0,
Y —MyaUg
where
-+ +
+ Mgy Mg
. 11 = -
At = ()2 M2 _ M
my ) Myy -+ -+ MyMyy +
- —2myymyiy — myamag, — — My
myg M2
and
~ 0 -1

A_:

—(mfl)Q — MMy 0

Notice that the above change of variables fixes the switching manifold.
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Now, let p = \/|(m1_1)2 +miyma, |, where (mi;)? + miymsy; < 0. Proceeding with the
following change of variables and rescaling of time

PO T t
(.T,y,t) =Y -
p " p

system (8) becomes

~ 0 -1 T 0
Zy (z,9) = + , for <0
1 0 i e
and
~ a b x 0
Zg (z,7) = + , for x>0,
c —a 7 d
where

a=— —
11 -
P myq
+
m
12
b |
myg
1 /(m37)*m
11 12 - +
c= 7( - 2myymy; *m12m21)»
P Mg
+ .+
d—= MyioUy nd
p
Mol
o — 12%

The singular points of Z; , Z are given by p~ = (—e,0) and p* = S (=b,a), resp..
a c

From (Hy), (Hz) and (H3) we conclude that b < 0,¢ > 0,d > 0,e >0 and a® +bc < 0. O

3.2. Study of the infinity. Applying the Bendixson change of coordinates given in (2) to
Z., we obtain that the differential system in ¥~ can be written

du-
% = —v(2eu+1) (u2 + 1)2) + 5( —ud (v u+byy) + vy vt +uv?(byy — 2by,)
—u?v(ag + 2(vy u + byy)) + v3(ag — 2v2_u)) ,
u=u",v=v"
do-
% = eu —evt+ud +w? + 5(u2v(72v;u — 2b7; + byy) — v3(2v7 u + byy)

)
U=u",v=v"

—uv?(2as + by, ) + ud(vy u+ byy) — v;v‘l)
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and for the differential system in X% can be written as

dut
% = —au® + 3auv? — u?v(b+ 2(c + du)) + v3(b — 2du) + E( —uwd(viu+ b))
o vt + uv?(b]; — 2b%,) — u?v(ca + 2(dou + dy)) + v (ca — Qdou)) L
dv* 2 3 2 3 2 + + +
T —3au’v + av® — uv?(2b + ¢) + u°(c + du) + E(u v(—2v]u — 2b]; + b3y)

—03 (20 u + b3y) — uv?(2e2 + di) + u(dou + di) — d0v4) — dvt

u=ut,v=vt

Applying the polar change of coordinates the left differential system can be written as

dst = —er?sinf — Ts(cos O(vy T + (az + by ) sin @) + by, cos? 6

+sin O(vg 7 + boy sin 9)) e g
do— . , . o
T 1+ercosf + 5( —sin@(v; r + ag sin ) + cos 0((bayy — b7;) sin

+vy 1) + by cos? 0)

)
r=r—,0=0—

and, similarly, the right differential system can be written as

+
dst = —r(acos(20) +sinf((b+ c)cosf +dr)) — ra(cos O(vir
+(cz + dy) sin ) + b}, cos? 0 + sin 0(dgr + b, sin 9)) ot ppt”
do* . 9 9 . 5 .
o= cosf(dr — 2asin@) — bsin® 0 + ccos? 6 + E( —sinf(v{r + cosind)

+ cos 0((bgy — bi;) sin @ + dor) + dy cos? 0)

r=r+,0=0+

Considering the rescaling of the radius given by r*t = £3p®t and taking 6~ as the new
independent variable we obtain

Zlig% = —ep (bl_l cos? 0 + (az + by ) sin @ cos 0 + by, sin2(6)>
+€2p((b§2 — by;) sin 6 cos  — ag sin® 6 + by, cos? 9)
(51_1 c0s? 0 + (az + by, ) sin 0 cos O + by, sin® 9) + (’)(53)‘ ,
p=p—,0=0—
and
dpt _ p(2acos(20) + (b+¢)sin(20)) P
o+

. . 2
2 (a sin(26) + bsin® 6 — ccos? 9) 2 (a sin(26) + bsin? 6 — ¢ cos? 9)
( — sin(20)(a(bf; + b3y) + bdy — cca) + cos(20)(acy — ady + bbi, + cbf;)

—acy — ady — bbly + cbfl) + (9(52)‘ gt
p=pT,U=
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doF
Let pT(0) = pg (0) + epf (0) + O(e?) be the solution of d’;% satisfying the initial condition

p* <7g) = po. So, we have

IOO_(Q) = pPo,

Loy PO 2asin(260) — (b+ ¢) cos(20) + b — ¢
0= 2 . ,
pr(0) = %(—le‘le — by, sin(20) + by, + a2 cos(20) + as + by, cos(20) + by, — 2b3,0

+bg, sin(26) + wby,),

T = — po 2b(bT, + bd,) arctan a
P () 4be/=2b\/—2asin(26) + (b + c) cos(20) —b+c( (b1 +052) (5

PE) (~2asin(26) + (b-+ c)cos(26) — b+ o) + 2sin(26) (rabb + b

+2aco€ + bE (b, — b]})) — cos(20)(wb(b + ¢)(b]; + bgy) + 2&(cca — bdy))
(b — ) (b, + bi) + 26§ — 2eeat),

where a? + be = —€2, with € > 0. Therefore, the displacement map writes

p(po) = pg (m/2) = py (—37/2) + e(pf (7/2) — p1 (—37/2)) + O(£?)
by, + b3,
3

Consequently, if £(by; + byy) + b} + by > 0 (resp. &(by; + byy) + bi; + bdy < 0), then the
infinity is a stable (resp. unstable) periodic solution.

1
= =35m0 (b;1 + byy + ) + O(e?).

3.3. Proof of Theorem A. The proof will be split in three steps. In the first one we prove
that the number of crossing limit cycles of Z; .(X) is given by the zeros of the first order
Melnikov function

1 _ _
Ml (yO) = Tyo (41)1 Yo — 2(611 + b22) (71' (62 + y%) =+ eyo)

+(b1; + bys) (62 + yg) arccos (eijg - 1)
1
bg3

2
arccos (#‘;352 — 1))),

were the Melnikov Function is given by

9)
(= 2bdyog (b1, + b) — 40 yoe® + b + i) (€2 + 3€?)

M (yo,€) = Mo(yo) + Mi(yo)e + Ma(yo)e® + O(e)?
and M;(yo) = M; (yo) — M (yo) for i = 0,1,2.
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In the second one we prove that the upper bound of the number of zeros is three, and
that this number is reached. Finally, in the third step we study the stability of the crossing
limit cycles.

Lemma 4. The zeros of M1(yo) correspond to crossing limit cycles for Zy (X).
Proof. Let Z. be given by (2). From hypotheses we know that b < 0,d > 0 and a? + bc < 0.
So, denote a? + be = —¢2, € > 0. Let (zX(t),yE(t)) be the trajectories of the linear vector

fields Z satisfying zZ (0) = 0, y=(0) = yo > 0, and zF(0) = 0,yF(0) = 1. So, for £ = 0,
we compute

xo (t) = e(—1 4 cost) — yp sint,

(10)
Yo (t) = yo cost + esint,

and
i (s) = b(d — dcos(sizz—l— 1€ sin(sf)) ’

(11)

Yl (s) = 5%( —d+ (d + y1§2> cos(s&) +&(d — ) sin(sf)).

Let t;. > 0 and ¢, < O be the first return times to X of the above solutions, that is
xZ (t)) = 27 (t,) = 0. For € = 0 we have
02
tijo = 2w — arccos <7 — 1)
10 62 ¥ y(%

and

. 1 ( 24> 1>
r0 = ——= arccos | —=————5 — .
T ¢ & + €2y?

Writing ¢ . = tj0 + tj1e + O(e2) and t,.. = t,q + tr16 + O(g?), the coefficients t;; and ¢, can
be computed by expanding the equations = (;) = 0 and z (¢,) = 0 around € = 0. So

1 _ _ _ _ _ _

tn = ———(200(2v7 e — e(e(br, +b) + yo(b — a2) + 2u3 o) — 27 (€2 + 43 ) (e(br,

2yo (62 + yo)

— - 2 2 2¢? — — —
) + yo(bi — a2)) + (€2 + 4 ) avccos (7 — 1) (e(b, +b3) + po(by — a2))),
and
1

t = (— 2dy1§(y1 (a202 +ab(bd, — b)) — b2d1) + bd(bl, + b, )

2063 (d2 + 362
+2y163(2av] Y1 + 2bdoyr — 207 d — cadyy) + (02y1 (a2 + 52) + b(—abf y1 + abiyy
242
+ +
+b71d + dbs,) — b2d1y1) (d2 + y?@) arccos <W - 1))

Replacing the expression of ¢;p and ¢;; in the expansion of the solution of (10) we get the
positive half return map in X7, i.e.

dvy yo — 2(by; + bay) (7re2 + eyo + wy%) + (b + byy) (62 + yg) arccos (% - 1)

M —
! 2yo
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Analogously, replacing the expressions of t,9 and ¢,1 in the expansion of the solution of (11)
we obtain the negative half return map in ¥, namely

L b+ bh) (@ + €243) arceos (% - 1) — 2bdeyy (b, + bly) — dvf 3y
o 2b€3y, .

The difference between M; and M;" provides the first order Melnikov function M (yg) =
M7 (yo) — M (yo) given in (9), and the simple zeros of M;(yo) provide the crossing limit
cycles of Z .(X). O

Lemma 5. The function My presented in (9) has at most three simple zeros. Furthermore,
this upper bound is reached.

Proof. Considering the change of coordinates and parameters given by yo = aso/§, e = a/&
and d = af in the function M;, given in (9), we obtain

1 _ - _
M (s0) = T 2bBsye2 ( — 48508 (v b+ vi) — 2ab3%s0 (b, + b3,y) + abl(by; + b22)(”523%
_ _ 2
+28s0 + 7r) + ab€(byq + ba) (623(2) + 1) arccos (1 — m) + abs? (s% + 1)

2
b+ b (7 - 1))
(b17 + ba,) arccos o

The positive zeros of M;(sg) coincide with the zeros of 268502 M (sg) = Ml(so). We have
that
Mi(so) = 2abf2so(bl; + bdy) + 48502 (v b+ vi) — abe(bT, + byy) (wﬂ%% + 2850 + w)

2

_Ogbf(bfl + b;Q) (ﬁQS% + 1) arccos (1 —_ W

2
arccos ( B — 1).
sg+1

) — abp? <5(2) + 1) (b1 + by

If
Ko = 26(262(ib+v)) — abg(b7, + byp) + abB(b}; + b)),
Ki = ab¢(br, +biy),
Ky = —baﬂz(bﬁ + b2+2)a

then M, 1 can be rewritten as

—~ 2 2
M, (s9) = Koso+ K, (6%34—1) (arccos (W_l) —27r) + K, (sg—i—l) arccos (Sgi—l).

Note that M, (sp) is the linear combination

M (s0) = Kofo(so) — 27Ky f1(s0) + K fa(s0) + K1 f3(s0)
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of the functions

fo(so) = g0

fi(so) = 14 5%s3

fa(s0) = (s§+1)arccos <s(2)2+1 - 1)
fa(so) = (B%s?+1)arccos (ﬁ - 1)_

DenOting Wk(so) = Wk(f07f1, "'afk)(s())v we have

WQ(SQ) = So
Wi(so) = B2%s3—1
2 4 (ﬁz + 1) S0
- 2082 -1 S IO Gl e A
Wa(s0) (B ) arccos (S% 1 ) ST

1683 (8% — 1) (280 (s2—1)+ (s3+ 1)2 arccos (s%i—l — 1))
(s3+1)° (823 +1)” '

Observe that the functions Wy(sg) for k = 0, 1, 2,3 have not roots if so > 1/8. In fact, we
have that

Wg(SQ) =

Wi(s0) (8253 + 1) = Ws(so),
where
1643% (8% — 1) <2so (s2—1)+ (s3+ 1)2 arccos (sQil - 1>)

Walso) = (s3+1)° 0

Computing the derivative of Ws(sq) we have

AWy 2568% (8% — 1) s}
dso (s3+1)°
which is strictly positive for all so # 0 and 8 > 1, and strictly negative for all so 7 0 and

0 < 8 < 1. Therefore, since limg,_,0 W5(sp) = 0 and lim,, o W5(sg) = 0, the function Ws
has no roots for sy > 0. Hence, the function W3 has no roots if sg > 0 and g # 1.

In summary, the ordered set F = [fo, f1, fo, f3] is an ET-Chebyschev System. By Theorem
2 we conclude that there exists a linear combination of the functions of F with at most three
roots. So, the upper bound for the number of zeros of any function in the linear space of
functions generated by the functions of F is three. In Example 4.1 of Section 4 we show
that this upper bound for the zeros is reached. (I

Lemma 6. The highest amplitude limit cycle (when it exists) is stable (resp. wunstable)
provided that (b, + byy) + bi; + bgy < 0 (resp. &(b]; + byy) + bj; + bgy > 0). The lowest
amplitude limit cycle (when it exists) is stable (resp. unstable) provided that by + by < 0
or by + by = 0 and bvy + v >0 (resp. by +byy > 0 or byy + by =0 and bvy + v < 0).
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Proof. In what follows we study the stability of the crossing limit cycles. In fact, this
stability depends of the sign of M;. Indeed, M, (yo) = M; (yo) — M;' (o), let yi € R such
that M (yo) = 0, if My(yo) > 0 for yo < y§ and Mi(yo) < 0 for yo > yg, then the crossing
limit cycle defined by yg is unstable. If these signs are reversed then it is stable.

We get that
li§O ]\71(50) = —2mabf(by; + byy), and 1i_r>n M (sg) = &(by; + byy) + by + biy.
S0 S0 —>00

Therefore, since b < 0, @« > 0 and & > 0 the sign( limoﬂl(so)) = sign(by; + by,), and
So—r

20850&%my, (s0) = ]\71(50) SO sign( limO Ml(so)) = —sign(by; + byy), see Figure 4. So, the
So—r

lemma follows. O

! 0.20
0.15
0.10

0.05

2 3 5
|
-0.05
|

FIGURE 4. The repealer crossing limit cycle and the graphic of M;(yo)
1-order linear perturbation of a piecewise linear center.

Now, we complete the proof of Theorem A analyzing the stability of the crossing limit
cycles and of the periodic orbit at infinity. In fact, the stability of the periodic orbit at
infinity is given by sign(&(by; + byy) + bf; + bgy), see Section 3.2, and the stability of the
crossing limit cycle (c.l.c.) of the biggest amplitude limit cycle is given in Table 1.

sign(€(byy + byy) + bi; + bdy) | stability of the bigger c.l.c | stability of co

-1 stable unstable

1 unstable stable

TABLE 1. Stability of the highest amplitude crossing limit cycle and the infinity.

3.4. Proof of Theorem B. In order to study the sliding/escaping limit cycle we consider
the second order linear perturbation of the vector field Z given in (2). The singular points
and the spectrum of the systems in ¥~ and X7 are given by p~ = (—e,0) and pt =
(—=bd/(a®+bc), —d/(a®+bc)), respectively; and the eigenvalues of the unperturbed piecewise
linear vector field Zs o(X) in ¥~ and ¥ are given by Spec™ = {i,—i} and Spect =
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{—\/@2 +be, Va2 + bc}, respectively. Consider Z, given in (2) and assume that b;; = —b,,,
the fold point in ¥~ and ¥ are given by

yr1 = vye+ (Ao + 07 az)e? + O(e3) and

vie —bCy + v ey)e?
Ypo = _17 + % +0(e%),

respectively. Under the assumptions e > 0 and db < 0 we get that ys is a visible fold point

+

and y¢o is an invisible fold point. Assuming that v; > ~ Y e have that Y1 is over of ygo

and by (3) the expression of the sliding vector fields is

Z3(0,y) = ylay — be — d) + e(vy (d — ay) — y(y(aaz + bby, + bly) — azd + bvy + cae + do)
—vie) + 52( —y(ady — vy by — asdy — Aad + bwy + vy ca + byyv + Cae

+Dg) + y2(—(aAs — agbdy + begy + byyca + Da)) + vy do + Agd — vy v — Coe).
Any point in the sliding region is given as a convex combination of y¢ and yyo as follows

_ _ vfr)\

Ys(A) = (1 = Nys1 + Aypa = E(’U1 —v A — T)’
where 0 < A < 1. A necessary condition for the existence of a sliding/escaping limit
cycle is that the sliding vector field is regular and points toward the visible fold point y;.
The pseudo-equilibrium is (0,y*) with y* = (d + be)/a, which is reached when A = \* =
—b(d + be)/(a(v] b+ vi)e). Under the hypotheses a < 0 and d + be > 0, we obtain that
(0,y*) ¢ X%, i.e., Z¢ is regular. The direction of the sliding vector field is given by the sign
of the derivative of Z? evaluated at ys, that is by (v; b+ v]")(be + d)/b. From assumptions
(d+be) > 0and (vib+v) < 0 ((v7b+v) > 0 resp.), we conclude that the sliding
(escaping resp.) vector field points towards ys1 (yyre resp.).

In what follows we study the return maps passing through the fold point of ZF and
Z-. Our goal is to provide an order relation between the images by the flow of the fold
points in a transverse section through y,. This analysis not only provides a necessary
condition for the existence of a sliding/escaping limit cycle, but also provides its distinct
topological type. The negative half return map in a neighborhood of the invisible fold point
ys2 defines the involution v,+ : I~ — I'", where I, I~ is an open interval above, below,
resp., of yro. For more details about the construction of this involution, see [19]. In this
way, we have that ’ygi (yr1) = yrs € I7. The line {(z,y);z = 0} is tangent to the fold
points. Therefore we cannot use the Implicit Function Theorem in this case. However,
we can obtain a condition for the existence of a sliding/escaping limit cycle studying the
intersection of the trajectories of Z. in ¥~ with initial conditions at ysi,yr2 and yys with
the line A = {(z,y);2 <0,y = yp1} C X7, which is a transversal section at the fold point
ys1. Considering the smooth vector field Z; and the initial conditions (0,y¢1), (0, yyr2) and
(0,yys) the intersection of the flow of Z with A define the return maps Sy(e), Si(e), Sa(e)
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and Ss3(¢), respectively, given by

1
So(e) = —2e+e(2bye —2v5 ) + 52(§7re(cl_1 + ) — 2(111_b2_2 — vy byy +wy
+(b31)%e — cyye )) +O(e?),
Si(e) = —2e+¢e(2bye — 205 ) + 52( - 2(vfb;2 — vy by +wy + (by)%e — cgle)

1 _ _
*57"6(011 + C22)) + 0(53)

&2
Sa(e) = —2e+e(2bye — 20y ) — ((vl )2b% + 20y b(2bbyye + vi7) + b2€(4( — vy by

2%

g + (bg;)%e - cgie) — meleqy + i) ) + (6F)?) + O,
2

€
2b2%e (
+mb2e?(cyy + ) + 4b%e? <02_1 - (b2_1)2)) + O(e?).
By hypothesis

S3(e) = —2e+e(2bye — 205 ) + — 4b%e(vy byy — vy byy +wy ) — 4(vy b+ v])?

(1—a) If 0 < ¢ + e < (v7 b+ v])?/(2b%€27), then S5 < Sy < S < Sy and system Z.
admits a sliding cycle of Type I.

(1—0b) If (v;b+v])2)/(20%€%7) < ¢y + o < 2(vy b+ v1)?/(b%e?T), then S5 < S; < S <
So, and system Z. admits a sliding cycle of Type II.

Yg3
ZI

FIGURE 5. The point yrs and the return maps Sy(¢), S1(¢), S2(e) and Ss(e).

Working similarly and assuming that a < 0,d + be > 0 and v; b + vf > 0 we can conclude
that

(2 —a) If —(vyb+v1)?)/(2b%e%T) < c]; + 3 < 0, then system Z. admits a escaping cycle
of Type L.

(2—0b) If ¢y + cpp < — (v b+ v])?)/(2b%€%T), then system Z. admits a escaping cycle of
Type II.

This completes the proof of Theorem B.
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3.5. Proof of Theorem C. We divide the proof in two steps. In the first we provide an
upper bound for the number of crossing limit cycles, and in the second we study the stability
of these limit cycles.

Lemma 7. Assuming that by; = —by, the function My, given in (9), has at most one simple

zero. Moreover, there exists choice of parameters for which this upper bound is reached.

Proof. Consider M (yo) given in (9) and assume that b;; = —b,,, then we obtain
2
2t d(bh + b)) (B T bs) (@ +&E7y5) arceos (% — 1)
b e 208” |

Proceeding with the change of coordinates yo = dso/¢ and writing kg = 2v; + 2v] /b +
d(bf; +b3,) /€% and ki = —d(bf; +b3,)/(26%) we get

(12) Mi(yo) = 2v; +

d 2
gsoMl(so) = kosg + k1 (sg + 1) arccos (1 — 58+1> .

So, denoting

fo(so) = so
2
fi(so) = (s§+1)arccos (1 - s%—l—l) ,
and computing their Wronskians we obtain
W (fo)(s0) =1
) 2
W(fo, f1)(s0) = —2so+(s§—1)arccos (1 ——5—].
sg+1

— AW
Let Wi(so) = W1/(s3 — 1). Therefore %(so) =8s3/((sd — 1)2 (s3 4 1)) which is strictly
0

positive for all s > 0. So, Wl is strictly increasing and W; has at most one zero. The
existence of a sliding limit cycle follows from Theorem B. In Example 4.2 we present a
piecewise linear vector field that exhibits a crossing/sliding limit cycle. O

In the previous case the stability of the crossing limit cycle is given by the following result.

n
Lemmf\ 8. The crossing limit cycle of (2) is unstable (resp. stable) if v + 5 > 0 (resp.
vy + 3 <0).

Proof. The stability of the crossing limit cycle is given by the sign of M;. Indeed, M1 (yo) =
M (yo) — M (yo), let y5 € R* such that M(yo) = 0, Mi(yo) > 0 for yo < yg, and
Mi(yo) < 0 for yo > y§. Therefore, the crossing limit cycle is unstable. If Mj(yo) < 0 for
Yo < yg and Mi(yo) > 0 for yo > yg, then the crossing limit cycle is stble. By (12) we have
that

vy
lim M- =2|vy +— .
y(ll—r>r(1)+ 1(y0) (Ul + b )

So, the lemma follows. O



20 J. L. CARDOSO, J. LLIBRE, , D.D. NOVAES AND D.J. TONON
4. FINAL REMARKS AND SOME EXAMPLES
In this section we provide two examples of piecewise linear vector fields, the first one

admitting three crossing limit cycles and the second one with a sliding and a crossing limit
cycle.

4.1. Example 1. Consider the following piecewise linear vector field Z = (2%, Z~) where

0 -1 T 0
Z=(x,y) = +
1 0 Y 0.55
-1 0 T —2.65
+e +
0 -1 Y 0
and
1 -1 T 0 0.21 0 x
Zt(z,y) = + +e
1.01 -1 Y 0.1 0 0 Y

The first order Melnikov function associated to this system is given by
-1
400y0
+(400y§ + 121) arccos (

Mi(yo) =

2
( — 2427 — 8007y3 + 420(3/8 + 1) arccos (—2 1 1)

Yo
242 1) + 840 )
400y2 + 121 wo)

which has three zeros yp = 1, yo = 2 and by the Newton-Kantorovich method, see [2], we have
the third zero in the neighborhood of yo = 3.82781, see Figure 6. Each zero corresponds to
a crossing limit cycle with alternating stability. In this case, the highest amplitude crossing
limit cycle is unstable and the infinity is stable.

0.20
0.15
0.10

0.05

1\/2 3 5

FIGURE 6. Graphic of M;. Each zero correspond to a crossing limit cycle.
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4.2. Example 2. Consider the following piecewise linear vector field Z = (Z*, Z~) where

0 -1 z 0 1 0 T 0.2
Z™ (x,y) = + +e +
10 Yy 1 0 -1 Yy 0
) 0.03 0 x
+€ )
0 0.02 Y
n -1 -1 T 0 1.5 0 T —-0.5
Z(z,y) = + te +
2 1 y 2 0 —04 y 0

The associated first order Melnikov function is given by

1.6
M- =22—-10.1 — — —1].
1(v0) ( Yo + " ) arccos (0.25% iy )

The graph of M; is given by Figure 7, the crossing limit cycle is located in a neighborhood
of yo = 7.94622, is repealer and the infinite is attractor.

FIGURE 7. Graphic of M;. The unique zero of M; correspond to a repealer
crossing limit cycle.
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