11,044 research outputs found
Decoherence induced by a phase-damping reservoir
A phase damping reservoir composed by -bosons coupled to a system of
interest through a cross-Kerr interaction is proposed and its effects on
quantum superpo sitions are investigated. By means of analytical calculations
we show that: i-) the reservoir induces a Gaussian decay of quantum coherences,
and ii-) the inher ent incommensurate character of the spectral distribution
yields irreversibility . A state-independent decoherence time and a master
equation are both derived an alytically. These results, which have been
extended for the thermodynamic limit, show that nondissipative decoherence can
be suitably contemplated within the EI D approach. Finally, it is shown that
the same mechanism yielding decoherence ar e also responsible for inducing
dynamical disentanglement.Comment: 8 pages, 3 figure
Manifestation of finite temperature size effects in nanogranular magnetic graphite
In addition to the double phase transition (with the Curie temperatures
T_C=300K and T_{Ct}=144K), a low-temperature anomaly in the dependence of the
magnetization is observed in the bulk magnetic graphite (with an average
granular size of L=10nm), which is attributed to manifestation of the size
effects below the quantum temperature. The best fits of the high-temperature
data (using the mean-field Curie-Weiss and Bloch expressions) produced
reasonable estimates for the model parameters, such as defects mediated
effective spin exchange energy J=12meV (which defines the intragranular Curie
temperature T_C) and proximity mediated interactions between neighboring grains
(through potential barriers created by thin layers of non-magnetic graphite)
with energy J_t=exp(-d/s)J=5.8meV (which defines the intergranular Curie
temperature T_{Ct}) with d=1.5nm and s=2nm being the intergranular distance and
characteristic length, respectively
Physical properties of single-crystalline fibers of the colossal-magnetoresistance manganite La0.7Ca0.3MnO3
We have grown high-quality single crystals of the colossal-magnetoresistance
(CMR) material La0.7Ca0.3MnO3 by using the laser heated pedestal growth (LHPG)
method. Samples were grown as fibers of different diameters, and with lengths
of the order of centimeters. Their composition and structure were verified
through X-ray diffraction, scanning electron microcopy with EDX (Energy
Dispersive X-ray Analysis) and by Rietveld analysis. The quality of the
crystalline fibers was confirmed by Laue and EBSD (Electron Backscatter
Diffraction) patterns. Rocking curves performed along the fiber axis revealed a
half-height width of 0.073 degrees. The CMR behavior was confirmed by
electrical resistivity and magnetization measurements as a function of
temperature.Comment: 11 pages (including 3 figures); to appear in Appl. Phys. Let
Using state space differential geometry for nonlinear blind source separation
Given a time series of multicomponent measurements of an evolving stimulus,
nonlinear blind source separation (BSS) seeks to find a "source" time series,
comprised of statistically independent combinations of the measured components.
In this paper, we seek a source time series with local velocity cross
correlations that vanish everywhere in stimulus state space. However, in an
earlier paper the local velocity correlation matrix was shown to constitute a
metric on state space. Therefore, nonlinear BSS maps onto a problem of
differential geometry: given the metric observed in the measurement coordinate
system, find another coordinate system in which the metric is diagonal
everywhere. We show how to determine if the observed data are separable in this
way, and, if they are, we show how to construct the required transformation to
the source coordinate system, which is essentially unique except for an unknown
rotation that can be found by applying the methods of linear BSS. Thus, the
proposed technique solves nonlinear BSS in many situations or, at least,
reduces it to linear BSS, without the use of probabilistic, parametric, or
iterative procedures. This paper also describes a generalization of this
methodology that performs nonlinear independent subspace separation. In every
case, the resulting decomposition of the observed data is an intrinsic property
of the stimulus' evolution in the sense that it does not depend on the way the
observer chooses to view it (e.g., the choice of the observing machine's
sensors). In other words, the decomposition is a property of the evolution of
the "real" stimulus that is "out there" broadcasting energy to the observer.
The technique is illustrated with analytic and numerical examples.Comment: Contains 14 pages and 3 figures. For related papers, see
http://www.geocities.com/dlevin2001/ . New version is identical to original
version except for URL in the bylin
Nernst branes from special geometry
We construct new black brane solutions in gauged
supergravity with a general cubic prepotential, which have entropy density
as and thus satisfy the Nernst Law. By using
the real formulation of special geometry, we are able to obtain analytical
solutions in closed form as functions of two parameters, the temperature
and the chemical potential . Our solutions interpolate between
hyperscaling violating Lifshitz geometries with at the
horizon and at infinity. In the zero temperature limit,
where the entropy density goes to zero, we recover the extremal Nernst branes
of Barisch et al, and the parameters of the near horizon geometry change to
.Comment: 37 pages. v2: numerical pre-factors of scalar fields q_A corrected in
Section 3. No changes to conclusions. References adde
Transmissão do amarelão-do-meloeiro pela mosca-branca.
Transmissao do amarelao-do-meloeiro pela mosca-branca.bitstream/CNPAT-2010/8612/1/Ct-093.pd
A new proposal of an efficient algorithm for routing and wavelength assignment in optical networks.
The routing and wavelength assignment (RWA) algorithms used in optical networks are critical to achieve good network performance. However, despite several previous studies to optimize the RWA, which is classified as an NP-Hard, it seems that there is not, a priori, any solution that would lead to standardization of this process. This article presents the proposed RWA algorithm based on a Generic Objective Function (GOF) which aims to establish a base from which it is possible to develop a standard or multiple standards for optical networks. The GOF algorithm introduces the concept of implicit constraint, which guarantees a simple solution to a problem not as trivial as the RWA
- …
