215 research outputs found

    Biomimetic hydroxyapatite nanocrystals are an active carrier for Salmonella bacteriophages

    Get PDF
    open access articlePurpose: The use of bacteriophages represents a valid alternative to conventional antimicrobial treatments, overcoming the widespread bacterial antibiotic resistance phenomenon. In this work, we evaluated whether biomimetic hydroxyapatite (HA) nanocrystals are able to enhance some properties of bacteriophages. The final goal of this study was to demonstrate that biomimetic HA nanocrystals can be used for bacteriophage delivery in the context of bacterial infections, and contribute – at the same time – to enhance some of the biological properties of the same bacteriophages such as stability, preservation, antimicrobial activity, and so on. Materials and methods: Phage isolation and characterization were carried out by using Mitomycin C and following double-layer agar technique. The biomimetic HA water suspension was synthesized in order to obtain nanocrystals with plate-like morphology and nanometric dimensions. The interaction of phages with the HA was investigated by dynamic light scattering and Zeta potential analyses. The cytotoxicity and intracellular killing activities of the phage–HA complex were evaluated in human hepatocellular carcinoma HepG2 cells. The bacterial inhibition capacity of the complex was assessed on chicken minced meat samples infected with Salmonella Rissen. Results: Our data highlighted that the biomimetic HA nanocrystal–bacteriophage complex was more stable and more effective than phages alone in all tested experimental conditions. Conclusion: Our results evidenced the important contribution of biomimetic HA nanocrystals: they act as an excellent carrier for bacteriophage delivery and enhance its biological characteristics. This study confirmed the significant role of the mineral HA when it is complexed with biological entities like bacteriophages, as it has been shown for molecules such as lactoferrin

    The Union is Strength: The Synergic Action of Long Fatty Acids and a Bacteriophage against Xanthomonas campestris Biofilm

    Get PDF
    Xanthomonas campestris pv. campestris is known as the causative agent of black rot disease, which attacks mainly crucifers, severely lowering their global productivity. One of the main virulence factors of this pathogen is its capability to penetrate and form biofilm structures in the xylem vessels. The discovery of novel approaches to crop disease management is urgent and a possible treatment could be aimed at the eradication of biofilm, although anti-biofilm approaches in agricultural microbiology are still rare. Considering the multifactorial nature of biofilm, an effective approach against Xanthomonas campestris implies the use of a multi-targeted or combinatorial strategy. In this paper, an anti-biofilm strategy based on the use of fatty acids and the bacteriophage (Xccφ1)-hydroxyapatite complex was optimized against Xanthomonas campestris mature biofilm. The synergic action of these elements was demonstrated and the efficient removal of Xanthomonas campestris mature biofilm was also proven in a flow cell system, making the proposed approach an effective solution to enhance plant survival in Xanthomonas campestris infections. Moreover, the molecular mechanisms responsible for the efficacy of the proposed treatment were explored

    The Staphylococcus aureus Peptidoglycan Protects Mice against the Pathogen and Eradicates Experimentally Induced Infection

    Get PDF
    Staphylococcus aureus, in spite of antibiotics, is still a major human pathogen causing a wide range of infections. The present study describes the new vaccine A170PG, a peptidoglycan-based vaccine. In a mouse model of infection, A170PG protects mice against a lethal dose of S. aureus. Protection lasts at least 40 weeks and correlates with increased survival and reduced colonization. Protection extends into drug-resistant (MRSA or VISA) and genetically diverse clinical strains. The vaccine is effective when administered - in a single dose and without adjuvant - by the intramuscular, intravenous or the aerosol routes and induces active as well as passive immunization. Of note, A170PG also displays therapeutic activity, eradicating staphylococci, even when infection is systemic. Sustained antibacterial activity and induction of a strong and rapid anti-inflammatory response are the mechanisms conferring therapeutic efficacy to A170PG

    Physical and functional characterization of the genetic locus of IBtk, an inhibitor of Bruton's tyrosine kinase: evidence for three protein isoforms of IBtk

    Get PDF
    Bruton's tyrosine kinase (Btk) is required for B-cell development. Btk deficiency causes X-linked agammaglobulinemia (XLA) in humans and X-linked immunodeficiency (Xid) in mice. Btk lacks a negative regulatory domain and may rely on cytoplasmic proteins to regulate its activity. Consistently, we identified an inhibitor of Btk, IBtk, which binds to the PH domain of Btk and down-regulates the Btk kinase activity. IBtk is an evolutionary conserved protein encoded by a single genomic sequence at 6q14.1 cytogenetic location, a region of recurrent chromosomal aberrations in lymphoproliferative disorders; however, the physical and functional organization of IBTK is unknown. Here, we report that the human IBTK locus includes three distinct mRNAs arising from complete intron splicing, an additional polyadenylation signal and a second transcription start site that utilizes a specific ATG for protein translation. By northern blot, 5′RACE and 3′RACE we identified three IBTKα, IBTKβ and IBTKγ mRNAs, whose transcription is driven by two distinct promoter regions; the corresponding IBtk proteins were detected in human cells and mouse tissues by specific antibodies. These results provide the first characterization of the human IBTK locus and may assist in understanding the in vivo function of IBtk

    Phage-resistance as an opportunity in the fight against bacteria.

    No full text
    Selection for phage-resistance can facilitate bacterial vaccine preparation
    corecore