6 research outputs found

    Compatibilização de blendas de poliamida 6/ABS usando os copolímeros acrílicos reativos MMA-GMA e MMA-MA. Parte 2: Comportamento termomecânico e morfológico das blendas Compatibilization of Polyamide 6/ABS blends using MMA-GMA and MMA-MA reactive acrylic copolymers. Part 2. Thermal-mechanical and morphological behavior of blends

    No full text
    Blendas poliméricas de poliamida 6 (PA6) com acrilonitrila-butadieno-estireno (ABS) foram preparadas em extrusora de rosca dupla, utilizando-se os copolímeros metacrilato de metila - metacrilato de glicidila (MMA-GMA) e metacrilato de metila-anidrido maléico (MMA-MA) como agentes de compatibilização. O ABS, por si só, não foi capaz de tenacificar a PA6, apresentando uma morfologia de fases com grandes e pequenos aglomerados na matriz PA6. A introdução do copolímero MMA-GMA, como compatibilizante do sistema, não melhorou significativamente as propriedades de impacto da blenda PA6/ABS. As fotomicrografias obtidas por microscopia eletrônica de transmissão (MET) indicaram uma morfologia com duas populações distintas de ABS: aglomerados e pequenas partículas dispersas, resultando em uma distribuição não-uniforme de domínios de ABS. A blenda compatibilizada com MMA-MA foi supertenaz (> 800 J/m) na temperatura ambiente e em baixas temperaturas (~ -10 °C), com baixas concentrações de compatibilizante e baixos teores de MA no copolímero. As blendas PA6/ABS compatibilizadas com MMA-MA apresentaram uma morfologia de partículas bem dispersas e adequadamente distribuídas na matriz, evidenciando a presença efetiva do copolímero como agente de compatibilização reativo deste sistema.<br>Blends of Polyamide 6 (PA6) with acrylonitrile-butadiene-styrene (ABS) were prepared in a corotating twin-screw extruder, using the poly(methyl methacrylate-co-glycidyl methacrylate) (MMA-GMA) and poly(methyl methacrylate-co-maleic anhydride) (MMA-MA) copolymers as compatibilizing agents. The ABS by itself was not capable to toughen PA6 and showed a phase morphology with large and small agglomerates in the PA6 matrix. The introduction of MMA-GMA copolymer as a compatibilizing agent in the system did not significantly improve the impact properties of PA6/ABS blend. Transmission electron microscope (TEM) photomicrographs indicated a morphology with two distinct populations of ABS: agglomerates and small dispersed particles resulting in a non-uniform distribution of ABS domains. The compatibilized blend with MMA-MA was super-tough (> 800 J/m) at room temperature and low temperature (~ -10 °C) with small amounts of MA in the copolymer and small amounts of compatibilizer in the blend. The PA6/ABS compatibilized blends with MMA-MA showed a morphology of well dispersed and distributed rubber particles in PA6 matrix, thus demonstrating the effective presence of the copolymer as a compatibilizing reactive agent of this system

    Search for gravitational waves associated with fast radio bursts detected by CHIME/FRB during the LIGO-Virgo observing run O3a

    No full text
    We search for gravitational-wave (GW) transients associated with fast radio bursts (FRBs) detected by the Canadian Hydrogen Intensity Mapping Experiment Fast Radio Burst Project, during the first part of the third observing run of Advanced LIGO and Advanced Virgo (2019 April 1 15:00 UTC–2019 October 1 15:00 UTC). Triggers from 22 FRBs were analyzed with a search that targets both binary neutron star (BNS) and neutron star– black hole (NSBH) mergers. A targeted search for generic GW transients was conducted on 40 FRBs. We find no significant evidence for a GW association in either search. Given the large uncertainties in the distances of our FRB sample, we are unable to exclude the possibility of a GW association. Assessing the volumetric event rates of both FRB and binary mergers, an association is limited to 15% of the FRB population for BNS mergers or 1% for NSBH mergers. We report 90% confidence lower bounds on the distance to each FRB for a range of GW progenitor models and set upper limits on the energy emitted through GWs for a range of emission scenarios. We find values of order 1051–1057 erg for models with central GW frequencies in the range 70–3560 Hz. At the sensitivity of this search, we find these limits to be above the predicted GW emissions for the models considered. We also find no significant coincident detection of GWs with the repeater, FRB 20200120E, which is the closest known extragalactic FRB

    First joint observation by the underground gravitational-wave detector KAGRA with GEO 600

    Get PDF
    International audienceWe report the results of the first joint observation of the KAGRA detector with GEO 600. KAGRA is a cryogenic and underground gravitational-wave detector consisting of a laser interferometer with 3 km arms, located in Kamioka, Gifu, Japan. GEO 600 is a British–German laser interferometer with 600 m arms, located near Hannover, Germany. GEO 600 and KAGRA performed a joint observing run from April 7 to 20, 2020. We present the results of the joint analysis of the GEO–KAGRA data for transient gravitational-wave signals, including the coalescence of neutron-star binaries and generic unmodeled transients. We also perform dedicated searches for binary coalescence signals and generic transients associated with gamma-ray burst events observed during the joint run. No gravitational-wave events were identified. We evaluate the minimum detectable amplitude for various types of transient signals and the spacetime volume for which the network is sensitive to binary neutron-star coalescences. We also place lower limits on the distances to the gamma-ray bursts analyzed based on the non-detection of an associated gravitational-wave signal for several signal models, including binary coalescences. These analyses demonstrate the feasibility and utility of KAGRA as a member of the global gravitational-wave detector network
    corecore