20,848 research outputs found

    An analogue of Ryser's Theorem for partial Sudoku squares

    Full text link
    In 1956 Ryser gave a necessary and sufficient condition for a partial latin rectangle to be completable to a latin square. In 1990 Hilton and Johnson showed that Ryser's condition could be reformulated in terms of Hall's Condition for partial latin squares. Thus Ryser's Theorem can be interpreted as saying that any partial latin rectangle RR can be completed if and only if RR satisfies Hall's Condition for partial latin squares. We define Hall's Condition for partial Sudoku squares and show that Hall's Condition for partial Sudoku squares gives a criterion for the completion of partial Sudoku rectangles that is both necessary and sufficient. In the particular case where n=pqn=pq, p∣rp|r, q∣sq|s, the result is especially simple, as we show that any r×sr \times s partial (p,q)(p,q)-Sudoku rectangle can be completed (no further condition being necessary).Comment: 19 pages, 10 figure

    A note on higher-dimensional magic matrices

    Full text link
    We provide exact and asymptotic formulae for the number of unrestricted, respectively indecomposable, dd-dimensional matrices where the sum of all matrix entries with one coordinate fixed equals 2.Comment: AmS-LaTeX, 9 page

    The instability of stellar structures intermediate between white dwarfs and neutron stars

    Get PDF
    Instability of stellar structures intermediate between dwarfs and neutron star

    Materials Review

    Get PDF

    Rotation in the Orion Nebula Cluster

    Get PDF
    Eighteen fields in the Orion Nebula Cluster (ONC) have been monitored for one or more observing seasons from 1990-99 with a 0.6-m telescope at Wesleyan University. Photometric data were obtained in Cousins I on 25-40 nights per season. Results from the first 3 years of monitoring were analyzed by Choi & Herbst (1996; CH). Here we provide an update based on 6 more years of observation and the extensive optical and IR study of the ONC by Hillenbrand (1997) and Hillenbrand et al. (1998). Rotation periods are now available for 134 ONC members. Of these, 67 were detected at multiple epochs with identical periods by us and 15 more were confirmed by Stassun et al. (1999) in their study of Ori OBIc/d. The bimodal period distribution for the ONC is confirmed, but we also find a clear dependence of rotation period on mass. This can be understood as an effect of deuterium burning, which temporarily slows the contraction and thus spin-up of stars with M <0.25 solar masses and ages of ~1 My. Stars with M <0.25 solar masses have not had time to bridge the gap in the period distribution at ~4 days. Excess H-K and I-K emission, as well as CaII infrared triplet equivalent widths (Hillenbrand et al. 1998), show weak but significant correlations with rotation period among stars with M >0.25 solar masses. Our results provide new observational support for the importance of disks in the early rotational evolution of low mass stars. [abridged]Comment: 18 pages of text, 17 figures, and 4 tables; accepted for publication in The Astronomical Journa

    Terrestrial Planet Formation I. The Transition from Oligarchic Growth to Chaotic Growth

    Full text link
    We use a hybrid, multiannulus, n-body-coagulation code to investigate the growth of km-sized planetesimals at 0.4-2 AU around a solar-type star. After a short runaway growth phase, protoplanets with masses of roughly 10^26 g and larger form throughout the grid. When (i) the mass in these `oligarchs' is roughly comparable to the mass in planetesimals and (ii) the surface density in oligarchs exceeds 2-3 g/sq cm at 1 AU, strong dynamical interactions among oligarchs produce a high merger rate which leads to the formation of several terrestrial planets. In disks with lower surface density, milder interactions produce several lower mass planets. In all disks, the planet formation timescale is roughly 10-100 Myr, similar to estimates derived from the cratering record and radiometric data.Comment: Astronomical Journal, accepted; 22 pages + 15 figures in ps format; eps figures at http://cfa-www.harvard.edu/~kenyon/dl/ revised version clarifies evolution and justifies choice of promotion masse

    Rapid neutron capture in supernova explosions

    Get PDF
    Rapid neutron capture in supernova explosion

    MIMO nonlinear PID predictive controller

    Get PDF
    A class of nonlinear generalised predictive controllers (NGPC) is derived for multi-input multi-output (MIMO) nonlinear systems with offset or steady-state response error. The MIMO composite controller consists of an optimal NGPC and a nonlinear disturbance observer. The design of the nonlinear disturbance observer to estimate the offset is particularly simple, as is the associated proof of overall nonlinear closed-loop system stability. Moreover, the transient error response of the disturbance observer can be arbitrarily specified by simple design parameters. Very satisfactory performance of the proposed MIMO nonlinear predictive controller is demonstrated for a three-link nonlinear robotic manipulator example

    An investigation of pulsar searching techniques with the Fast Folding Algorithm

    Full text link
    Here we present an in-depth study of the behaviour of the Fast Folding Algorithm, an alternative pulsar searching technique to the Fast Fourier Transform. Weaknesses in the Fast Fourier Transform, including a susceptibility to red noise, leave it insensitive to pulsars with long rotational periods (P > 1 s). This sensitivity gap has the potential to bias our understanding of the period distribution of the pulsar population. The Fast Folding Algorithm, a time-domain based pulsar searching technique, has the potential to overcome some of these biases. Modern distributed-computing frameworks now allow for the application of this algorithm to all-sky blind pulsar surveys for the first time. However, many aspects of the behaviour of this search technique remain poorly understood, including its responsiveness to variations in pulse shape and the presence of red noise. Using a custom CPU-based implementation of the Fast Folding Algorithm, ffancy, we have conducted an in-depth study into the behaviour of the Fast Folding Algorithm in both an ideal, white noise regime as well as a trial on observational data from the HTRU-S Low Latitude pulsar survey, including a comparison to the behaviour of the Fast Fourier Transform. We are able to both confirm and expand upon earlier studies that demonstrate the ability of the Fast Folding Algorithm to outperform the Fast Fourier Transform under ideal white noise conditions, and demonstrate a significant improvement in sensitivity to long-period pulsars in real observational data through the use of the Fast Folding Algorithm.Comment: 19 pages, 15 figures, 3 table
    • …
    corecore