18,278 research outputs found

    Dynamics of a 1-D model for the emergence of the plasma edge shear flow layer with momentum conserving Reynolds stress

    Full text link
    A one-dimensional version of the second-order transition model based on the sheared flow amplification by Reynolds stress and turbulence supression by shearing is presented. The model discussed in this paper includes a form of the Reynolds stress which explicitly conserves momentum. A linear stability analysis of the critical point is performed. Then, it is shown that the dynamics of weakly unstable states is determined by a reduced equation for the shear flow. In the case in which the flow damping term is diffusive, the stationary solutions are those of the real Ginzburg-Landau equation.Comment: 21 pages, 8 figure

    A Statistical Study of Photospheric Magnetic Field Changes During 75 Solar Flares

    Full text link
    Abrupt and permanent changes of photospheric magnetic fields have been observed during solar flares. The changes seem to be linked to the reconfiguration of magnetic fields, but their origin is still unclear. We carried out a statistical analysis of permanent line-of-sight magnetic field (BLOSB_{\rm LOS}) changes during 18 X-, 37 M-, 19 C- and 1 B-class flares using data from Solar Dynamics Observatory/Helioseismic and Magnetic Imager. We investigated the properties of permanent changes, such as frequency, areas, and locations. We detected changes of BLOSB_{\rm LOS} in 59/75 flares. We find that strong flares are more likely to show changes, with all flares \ge M1.6 exhibiting them. For weaker flares, permanent changes are observed in 6/17 C-flares. 34.3\% of the permanent changes occurred in the penumbra and 18.9\% in the umbra. Parts of the penumbra appeared or disappeared in 23/75 flares. The area where permanent changes occur is larger for stronger flares. Strong flares also show a larger change of flux, but there is no dependence of the magnetic flux change on the heliocentric angle. The mean rate of change of flare-related magnetic field changes is 20.7 Mx cm2^{-2} min1^{-1}. The number of permanent changes decays exponentially with distance from the polarity inversion line. The frequency of the strength of permanent changes decreases exponentially, and permanent changes up to 750 Mx cm2^{-2} were observed. We conclude that permanent magnetic field changes are a common phenomenon during flares, and future studies will clarify their relation to accelerated electrons, white light emission, and sunquakes to further investigate their origin.Comment: Piblished in Ap

    Flow Blurring-Enabled Production of Polymer Filaments from Poly(ethylene oxide) Solutions

    Get PDF
    Flow blurring (FB) atomizers are relatively simple yet robust devices used for the generation of sprays from solutions of a wide range of viscosities. In this work, we have demonstrated that FB devices may also be applied for massive production of liquid filaments from polymeric solutions. They can later be transformed into solid filaments and fibers, leading to the production of so-called fiber mats. The liquid precursors consisted of poly(ethylene oxide) (PEO) solutions of varying molecular weights (105 [100k] to 4 × 106 g/mol [4M]) and concentrations. The FB device was operated in the gas pressure range of 3−6 bar. Except for solutions of PEO 100k, all solutions exhibited a shear thinning behavior. For massive filament production, a threshold polymer concentration (ct) was identified for each molecular weight. Below such concentration, the atomization resulted in droplets (the classical FB functioning mode). Such a threshold value decreased as the PEO molecular weight increased, and it coincides with the polymer coil overlap concentration, c*. The viscoelastic nature of the solutions was also observed to increase with the molecular weight. A 3.2 dependency of the zero-shear rate viscosity on a so-called Bueche parameter was found for filament production, whereas a nearly linear dependency was found for droplet production. In general, the mean diameter of the filaments decreased as they traveled downstream from the atomization point. Furthermore, at a given distance from the atomizer outlet and gas pressure, the mean filament diameter slightly shifted toward larger sizes with increasing PEO molecular weight. The tendency agrees well with the calculated filaments’ Deborah number, which increases with PEO molecular weight. The approach presented herein describes a highthroughput and efficient method for the massive production of viscous filaments. These may be transformed into fibers by an on-line drying step.Ministerio de Economía y Competitividad DPI2016-78887-C3-1-

    Continuous Time Random Walks in periodic systems: fluid limit and fractional differential equations on the circle

    Get PDF
    In this article, the continuous time random walk on the circle is studied. We derive the corresponding generalized master equation and discuss the effects of topology, especially important when Levy flights are allowed. Then, we work out the fluid limit equation, formulated in terms of the periodic version of the fractional Riemann-Liouville operators, for which we provide explicit expressions. Finally, we compute the propagator in some simple cases. The analysis presented herein should be relevant when investigating anomalous transport phenomena in systems with periodic dimensions.Comment: 14 pages, 1 figure. References added. Published versio

    Fractional generalization of Fick's law: a microscopic approach

    Get PDF
    In the study of transport in inhomogeneous systems it is common to construct transport equations invoking the inhomogeneous Fick law. The validity of this approach requires that at least two ingredients be present in the system. First, finite characteristic length and time scales associated to the dominant transport process must exist. Secondly, the transport mechanism must satisfy a microscopic symmetry: global reversibility. Global reversibility is often satisfied in nature. However, many complex systems exhibit a lack of finite characteristic scales. In this Letter we show how to construct a generalization of the inhomogeneous Fick law that does not require the existence of characteristic scales while still satisfying global reversibility.Comment: 4 pages. Published versio
    corecore