102 research outputs found

    Global footprint of mislabelled seafood on a small island nation

    Get PDF
    Seafood mislabelling is a global issue that affects consumers, target species, and the ability to manage fisheries. Due to their high demand and value, groupers (Epinephelinae spp.) are frequent targets for fraudulent substitution on the world's major seafood markets. Yet, little is known on the prevalence of grouper mislabelling in the Wider Caribbean Region. We conducted the first ‘grouper’ authentication survey in the Turks and Caicos Islands (TCI), a luxury tourist destination where the locally caught but critically endangered Nassau grouper (Epinephelus striatus) features prominently on menus. DNA barcoding was used to assess mislabelling of market samples and simultaneously to gauge compliance with the Nassau grouper closed season. Our genetic analyses did not detect banned Nassau grouper, but only 18% of samples from restaurants and stores were confirmed as Epinephelinae (i.e. groupers), and 96% were mislabelled in some way. Substitutes for grouper mostly comprised freshwater catfish (Pangasianodon hypophthalmus; 57% of samples) and snappers (Lutjanidae; 25%), whereas samples sold as ‘local grouper’ were from Indo-Pacific or Asian inland waters. Only 22% of samples were matched to species found locally, all being cubera snapper (Lutjanus cyanopterus). Our study suggests that (i) mislabelling is motivated predominantly by financial incentives and/or driven by low supplies of groupers, (ii) local fishers are not the main source of mislabelled grouper into the supply chain, and (iii) the primary victims are consumers, fishing communities, and ultimately fragile fish stocks. Our findings can be used to help improve transparency, traceability and accountability in local seafood supply chains.publishedVersio

    Beyond the fundamental noise limit in coherent optical fiber links

    Get PDF
    It is well known that temperature variations and acoustic noise affect ultrastable frequency dissemination along optical fiber. Active stabilization techniques are in general adopted to compensate for the fiber-induced phase noise. However, despite this compensation, the ultimate link performances remain limited by the so called delay-unsuppressed fiber noise that is related to the propagation delay of the light in the fiber. In this paper, we demonstrate a data post-processing approach which enables us to overcome this limit. We implement a subtraction algorithm between the optical signal delivered at the remote link end and the round-trip signal. In this way, a 6 dB improvement beyond the fundamental limit imposed by delay-unsuppressed noise is obtained. This result enhances the resolution of possible comparisons between remote optical clocks by a factor of 2. We confirm the theoretical prediction with experimental data obtained on a 47 km metropolitan fiber link, and propose how to extend this method for frequency dissemination purposes as well

    High-performance laser-pumped rubidium frequency standard for satellite navigation

    Full text link

    A pulsed-Laser Rb atomic frequency standard for GNSS applications

    Get PDF
    We present the results of 10 years of research related to the development of a Rubidium vapor cell clock based on the principle of pulsed optical pumping (POP). Since in the pulsed approach, the clock operation phases take place at different times, this technique demonstrated to be very effective in curing several issues affecting traditional Rb clocks working in a continuous regime, like light shift, with a consequent improvement of the frequency stability performances. We describe two laboratory prototypes of POP clock, both developed at INRIM. The first one achieved the best results in terms of frequency stability: an Allan deviation of σy(τ) = 1.7 × 10−13 τ−1/2, being τ the averaging time, has been measured. In the prospect of a space application, we show preliminary results obtained with a second more recent prototype based on a loaded cavity-cell arrangement. This clock has a reduced size and exhibited an Allan deviation of σy(τ) = 6 × 10−13 τ−1/2, still a remarkable result for a vapor cell device. In parallel, an ongoing activity performed in collaboration with Leonardo S.p.A. and aimed at developing an engineered space prototype of the POP clock is finally mentioned. Possible issues related to space implementation are also briefly discussed. On the basis of the achieved results, the POP clock represents a promising technology for future GNSSs

    Metrological characterization of the pulsed Rb clock with optical detection

    Full text link
    We report on the implementation and the metrological characterization of a vapor-cell Rb frequency standard working in pulsed regime. The three main parts that compose the clock, physics package, optics and electronics, are described in detail in the paper. The prototype is designed and optimized to detect the clock transition in the optical domain. Specifically, the reference atomic transition, excited with a Ramsey scheme, is detected by observing the interference pattern on a laser absorption signal. \ The metrological analysis includes the observation and characterization of the clock signal and the measurement of frequency stability and drift. In terms of Allan deviation, the measured frequency stability results as low as 1.7×10−13 τ−1/21.7\times 10^{-13} \ \tau^{-1/2}, τ\tau being the averaging time, and reaches the value of few units of 10−1510^{-15} for τ=104\tau=10^{4} s, an unprecedent achievement for a vapor cell clock. We discuss in the paper the physical effects leading to this result with particular care to laser and microwave noises transferred to the clock signal. The frequency drift, probably related to the temperature, stays below 10−1410^{-14} per day, and no evidence of flicker floor is observed. \ We also mention some possible improvements that in principle would lead to a clock stability below the 10−1310^{-13} level at 1 s and to a drift of few units of 10−1510^{-15} per day

    Marine turtle harvest in a mixed small-scale fishery: Evidence for revised management measures

    Get PDF
    Copyright © 2013 Elsevier. NOTICE: this is the author’s version of a work that was accepted for publication in Ocean and Coastal Management. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Ocean and Coastal Management, 2013, Vol. 82, pp. 34 – 42 DOI: http://dx.doi.org/10.1016/j.ocecoaman.2013.05.004Small-scale fisheries (SSF) account for around half of the world's marine and inland fisheries, but their impact on the marine environment is usually under-estimated owing to difficulties in monitoring and regulation. Successful management of mixed SSF requires holistic approaches that sustainably exploit target species, consider non-target species and maintain fisher livelihoods. For two years, we studied the marine turtle fishery in the Turks and Caicos Islands (TCI) in the Wider Caribbean Region, where the main export fisheries are queen conch (Strombus gigas) and the spiny lobster (Panulirus argus); with fin-fish, green turtles (Chelonia mydas) and hawksbill turtles (Eretmochelys imbricata) taken for domestic consumption. We evaluate the turtle harvest in relation to the other fisheries and recommend legislation and management alternatives. We demonstrate the connectivity between multi-species fisheries and artisanal turtle capture: with increasing lobster catch-per-unit-effort (CPUE), hawksbill catch increased whilst green turtle catch decreased. With increasing conch CPUE, hawksbill catch declined and there was no demonstrable effect on green turtle catch. We estimate 176–324 green and 114–277 hawksbill turtles are harvested annually in TCI: the largest documented legal hawksbill fishery in the western Atlantic. Of particular concern is the capture of adult turtles. Current legislation focuses take on larger individuals that are key to population maintenance. Considering these data we recommend the introduction of maximum size limits for both species and a closed season on hawksbill take during the lobster fishing season. Our results highlight the need to manage turtles as part of a broader approach to SSF management

    Optical frequency fiber dissemination at 10^−19 uncertainty level in Italy

    Get PDF
    We describe the realization of a coherent optical fiber link for the metrological frequency dissemination on the national scale. This infrastructure will improve the frequency references used in radio-astronomy and in atomic physics and will benefit several laboratories in Italy involved in high resolution spectroscopy, matter physics and radioastronomy. The present infrastructure will be part of a forthcoming European network of optical links. This paper describes the haul implementation, the characterization and the future applications of this backbone. © 2014 AEIT

    Somatic growth dynamics of West Atlantic hawksbill sea turtles: a spatio-temporal perspective

    Get PDF
    This is the final version of the article. Available from the publisher via the DOI in this record.Somatic growth dynamics are an integrated response to environmental conditions. Hawksbill sea turtles (Eretmochelys imbricata) are long-lived, major consumers in coral reef habitats that move over broad geographic areas (hundreds to thousands of kilometers). We evaluated spatio-temporal effects on hawksbill growth dynamics over a 33-yr period and 24 study sites throughout the West Atlantic and explored relationships between growth dynamics and climate indices. We compiled the largest ever data set on somatic growth rates for hawksbills – 3541 growth increments from 1980 to 2013. Using generalized additive mixed model analyses, we evaluated 10 covariates, including spatial and temporal variation, that could affect growth rates. Growth rates throughout the region responded similarly over space and time. The lack of a spatial effect or spatio-temporal interaction and the very strong temporal effect reveal that growth rates in West Atlantic hawksbills are likely driven by region-wide forces. Between 1997 and 2013, mean growth rates declined significantly and steadily by 18%. Regional climate indices have significant relationships with annual growth rates with 0- or 1-yr lags: positive with the Multivariate El Niño Southern Oscillation Index (correlation = 0.99) and negative with Caribbean sea surface temperature (correlation = −0.85). Declines in growth rates between 1997 and 2013 throughout the West Atlantic most likely resulted from warming waters through indirect negative effects on foraging resources of hawksbills. These climatic influences are complex. With increasing temperatures, trajectories of decline of coral cover and availability in reef habitats of major prey species of hawksbills are not parallel. Knowledge of how choice of foraging habitats, prey selection, and prey abundance are affected by warming water temperatures is needed to understand how climate change will affect productivity of consumers that live in association with coral reefs
    • …
    corecore