980 research outputs found

    Kamilari. Una necropoli di tombe a tholos nella MessarĂ  (Creta)

    Get PDF

    A Superwind from Early Post-Red Giant Stars?

    Get PDF
    We suggest that the gap observed at 20,000 K in the horizontal branches of several Galactic globular clusters is caused by a small amount of extra mass loss which occurs when stars start to "peel off" the red giant branch (RGB), i.e., when their effective temperature starts to increase, even though they may still be on the RGB. We show that the envelope structure of RGB stars which start to peel off is similar to that of late asymptotic giant branch stars known to have a super-wind phase. An analogous super-wind in the RGB peel-off stars could easily lead to the observed gap in the distribution of the hottest HB stars.Comment: 9 pages; Accepted by ApJ Letters; Available also at http://www.astro.puc.cl/~mcatelan

    The Red Giant Branch in Near-Infrared Colour-Magnitude Diagrams. II: The luminosity of the Bump and the Tip

    Full text link
    We present new empirical calibrations of the Red Giant Branch (RGB) Bump and Tip based on a homogeneous near-Infrared database of 24 Galactic Globular Clusters. The luminosities of the RGB Bump and Tip in the J, H and K bands and their dependence on the cluster metallicity have been studied, yielding empirical relationships. By using recent transformations between the observational and theoretical planes, we also derived similar calibrations in terms of bolometric luminosity. Direct comparison between updated theoretical models and observations show an excellent agreement. The empirical calibration of the RGB Tip luminosity in the near-Infrared passbands presented here is a fundamental tool to derive distances to far galaxies beyond the Local Group, in view of using the new ground-based adaptive optics facilities and, in the next future, the James Webb Space Telescope.Comment: 7 pages, 7 figures, accepted for publication in MNRA

    Discovery of > 200 RR Lyrae Variables in M62: An Oosterhoff I Globular Cluster with a Predominantly Blue HB

    Full text link
    We report on the discovery of a large number of RR Lyrae variable stars in the moderately metal-rich Galactic globular cluster M62 (NGC 6266), which places it among the top three most RR Lyrae-rich globular clusters known. Likely members of the cluster in our studied field, from our preliminary number counts, include about 130 fundamental-mode (RRab) pulsators, with = 0.548 d, and about 75 first-overtone (RRc) pulsators, with = 0.300 d. The average periods and the position of the RRab variables with well-defined light curves in the Bailey diagram both suggest that the cluster is of Oosterhoff type I. However, the morphology of the cluster's horizontal branch (HB) is strikingly similar to that of the Oosterhoff type II globular cluster M15 (NGC 7078), with a dominant blue HB component and a very extended blue tail. Since M15 and M62 differ in metallicity by about one dex, we conclude that metallicity, at a fixed HB type, is a key parameter determining the Oosterhoff status of a globular cluster and the position of its variables in the Bailey diagram.Comment: 5 pages, 4 figures. ApJ Letters, in pres

    The early evolution of Globular Clusters: the case of NGC 2808

    Full text link
    Enhancement and spread of helium among globular cluster stars have been recently suggested as a way to explain the horizontal branch blue tails, in those clusters which show a primordial spread in the abundances of CNO and other elements involved in advanced CNO burning (D'Antona et al. 2002). In this paper we examine the implications of the hypothesis that, in many globular clusters, stars were born in two separate events: an initial burst (first generation), which gives origin to probably all high and intermediate mass stars and to a fraction of the cluster stars observed today, and a second, prolonged star formation phase (second generation) in which stars form directly from the ejecta of the intermediate mass stars of the first generation. In particular, we consider in detail the morphology of the horizontal branch in NGC 2808 and argue that it unveils the early cluster evolution, from the birth of the first star generation to the end of the second phase of star formation. This framework provides a feasible interpretation for the still unexplained dichotomy of NGC 2808 horizontal branch, attributing the lack of stars in the RR Lyr region to the gap in the helium content between the red clump, whose stars are considered to belong to the first stellar generation and have primordial helium, and the blue side of the horizontal branch, whose minimum helium content reflects the helium abundance in the smallest mass (~4Msun)contributing to the second stellar generation. This scenario provides constraints on the required Initial Mass Function, in a way that a great deal of remnant neutron stars and stellar mass black holes might have been produced.Comment: 23 pages, 7 figures, in press on The Astrophysical Journa

    Dynamical Mass Constraints on Low-Mass Pre-Main-Sequence Stellar Evolutionary Tracks: An Eclipsing Binary in Orion with a 1.0 Msun Primary and an 0.7 Msun Secondary

    Full text link
    We report the discovery of a double-lined, spectroscopic, eclipsing binary in the Orion star-forming region. We analyze the system spectroscopically and photometrically to empirically determine precise, distance-independent masses, radii, effective temperatures, and luminosities for both components. The measured masses for the primary and secondary, accurate to ~1%, are 1.01 Msun and 0.73 Msun, respectively; thus the primary is a definitive pre-main-sequence solar analog, and the secondary is the lowest-mass star yet discovered among pre-main-sequence eclipsing binary systems. We use these fundamental measurements to test the predictions of pre-main-sequence stellar evolutionary tracks. None of the models we examined correctly predict the masses of the two components simultaneously, and we implicate differences between the theoretical and empirical effective temperature scales for this failing. All of the models predict the observed slope of the mass-radius relationship reasonably well, though the observations tend to favor models with low convection efficiencies. Indeed, considering our newly determined mass measurements together with other dynamical mass measurements of pre-main-sequence stars in the literature, as well as measurements of Li abundances in these stars, we show that the data strongly favor evolutionary models with inefficient convection in the stellar interior, even though such models cannot reproduce the properties of the present-day Sun.Comment: Accepted by Ap

    Evolved Stars in the Core of the Massive Globular Cluster NGC 2419

    Full text link
    We present an analysis of optical and ultraviolet Hubble Space Telescope photometry for evolved stars in the core of the distant massive globular cluster NGC 2419. We characterize the horizontal branch (HB) population in detail including corrections for incompleteness on the long blue tail. We present a method for removing (to first order) lifetime effects from the distribution of HB stars to facilitate more accurate measurements of helium abundance for clusters with blue HBs and to clarify the distribution of stars reaching the zero-age HB. The population ratio R = N_HB / N_RGB implies there may be slight helium enrichment among the EHB stars in the cluster, but that it is likely to be small (dY < 0.05). An examination of the upper main sequence does not reveal any sign of multiple populations. Through comparisons of optical CMDs, we present evidence that the EHB clump in NGC 2419 contains the end of the canonical horizontal branch, and that the boundary between the normal HB stars and blue hook stars shows up as a change in the density of stars in the CMD. This corresponds to a spectroscopically-verified gap in NGC 2808 and an "edge" in omega Cen. The more clearly visible HB gap at V = 23.5 appears to be too bright.(Abridged)Comment: 27 pages, 25 figures (some bitmapped), uses emulateapj, accepted to Astronomical Journa

    Discovery of Two Very Low-Mass Binaries: Final Results of an Adaptive Optics Survey of Nearby M6.0-M7.5 Stars

    Full text link
    We present updated results of a high-resolution, magnitude limited (Ks<12 mag) imaging survey of nearby low-mass M6.0-M7.5 field stars. The observations were carried out using adaptive optics at the Gemini North, VLT, Keck II, and Subaru telescopes. Our sample of 36 stars consists predominantly of nearby (<30 pc) field stars, 5 of which we have resolved as binaries. Two of the binary systems, 2MASSI J0429184-312356 and 2MASSI J1847034+552243, are presented here for the first time. All 5 discovered binary systems have separations between 0.08"-0.53" (2-9 AU) with similar mass ratios (q>0.8, delta Ks < 1 mag). This result supports the hypothesis that wide (a>20 AU) very low-mass (M_tot<0.19 M_sun) binary systems are rare. The projected semimajor axis distribution of these systems peak at ~ 5 AU and we report a sensitivity-corrected binary fraction of 9% (-3%, +4%) for stars with primaries of spectral type M6.0-M7.5 with separations >3 AU and mass ratios q>0.6. Within these instrumental sensitivities, these results support the overall trend that both the semimajor axis distribution and binary fraction are a function of the mass of the primary star and decrease with decreasing primary mass. These observations provide important constraints for low-mass binary star formation theories.Comment: 20 pages, 8 figures, accepted to Ap

    Star Counts in the Globular Cluster Omega Centauri. I. Bright Stellar Components

    Full text link
    We present an extensive photometry on HB, RGB, and MSTO stars in Omega Cen. The central regions of the cluster were covered with a mosaic of F435W, F625W, and F658N-band data collected with ACS/HST. The outer reaches were covered with a large set of U,B,V,I-band data collected with the [email protected] ESO/MPI telescope. The final catalogue includes ~1.7 million stars. We identified ~3,200 likely HB stars and ~12,500 stars brighter than the subgiant branch and fainter than the RGB bumps. The HB morphology changes with the radial distance. The relative number of extreme HB stars decreases from ~30% to ~21% when moving from the center toward the outer regions of the cluster, while the fraction of less hot HB stars increases from ~62% to ~72%. We performed a detailed comparison between observed ratios of different stellar tracers and predictions based on canonical evolutionary models with a primordial helium (Y=0.23) content and metal abundances (Z=0.0002,0.001) that bracket the observed spread in metallicity of Omega Cen stars. We found that the empirical star counts of HB stars are on average larger (30%-40%) than predicted. Moreover, the rate of HB stars is 43% larger than the MSTO rate. The discrepancy between the rate of HB compared with the rate of RG and MSTO stars supports the evidence that we are facing a true excess of HB stars. The same comparison was performed by assuming a mix of stellar populations made with 70% of canonical stars and 30% of He-enhanced stars. The discrepancy between theory and observations decreases by a factor of two when compared with rates predicted by canonical He content models, but still 15%-25% (Y=0.42) and 15%-20% (Y=0.33) higher than observed. Furthermore, the ratio between HB and MSTO star counts are ~24% (Y=0.42) and 30% (Y=0.33) larger than predicted lifetime ratios.Comment: 54 pages, 17 figures,to be published in ApJ, see link at http://stellari.wiki.zoho.co

    Near-Infrared photometry of four metal-rich Bulge globular clusters: NGC6304, NGC6569, NGC6637, NGC6638

    Full text link
    We present high-quality near-Infrared photometry of four Bulge metal-rich globular clusters, namely: NGC 6304, NGC 6569, NGC 6637 and NGC 6638. By using the observed Colour-Magnitude Diagrams we derived a photometric estimates of the cluster reddening and distance. We performed a detailed analysis of the Red Giant Branch, presenting a complete description of morphologic parameters and evolutionary features (Bump and Tip). Photometric estimates of the cluster metallicity have been obtained by using the updated set of relations (published by our group) linking the metal abundance to a variety of near-Infrared indices measured along the Red Giant Branch. The detection of the Red Giant Branch Bump and the Tip is also presented and briefly discussed.Comment: 12 pages, 15 figures, accepted for publication in MNRA
    • …
    corecore