1,609 research outputs found

    Generalized Phase Rules

    Full text link
    For a multi-component system, general formulas are derived for the dimension of a coexisting region in the phase diagram in various state spaces.Comment: In the revised manuscript, physical meanings of D's are explained by adding three figures. 10 pages, 3 figure

    Equilibrium and nonequilibrium thermodynamics of particle-stabilized thin liquid films

    Full text link
    Our recent quasi-two-dimensional thermodynamic description of thin-liquid films stabilized by colloidal particles is generalized to describe nonuniform equilibrium states of films in external potentials and nonequilibrium transport processes produced in the film by gradients of thermodynamic forces. Using a Monte--Carlo simulation method, we have determined equilibrium equations of state for a film stabilized by a suspension of hard spheres. Employing a multipolar-expansion method combined with a flow-reflection technique, we have also evaluated the short-time film-viscosity coefficients and collective particle mobility.Comment: 16 pages, 10 figure

    Macroscopic entanglement of many-magnon states

    Full text link
    We study macroscopic entanglement of various pure states of a one-dimensional N-spin system with N>>1. Here, a quantum state is said to be macroscopically entangled if it is a superposition of macroscopically distinct states. To judge whether such superposition is hidden in a general state, we use an essentially unique index p: A pure state is macroscopically entangled if p=2, whereas it may be entangled but not macroscopically if p<2. This index is directly related to the stability of the state. We calculate the index p for various states in which magnons are excited with various densities and wavenumbers. We find macroscopically entangled states (p=2) as well as states with p=1. The former states are unstable in the sense that they are unstable against some local measurements. On the other hand, the latter states are stable in the senses that they are stable against local measurements and that their decoherence rates never exceed O(N) in any weak classical noises. For comparison, we also calculate the von Neumann entropy S(N) of a subsystem composed of N/2 spins as a measure of bipartite entanglement. We find that S(N) of some states with p=1 is of the same order of magnitude as the maximum value N/2. On the other hand, S(N) of the macroscopically entangled states with p=2 is as small as O(log N)<< N/2. Therefore, larger S(N) does not mean more instability. We also point out that these results are analogous to those for interacting many bosons. Furthermore, the origin of the huge entanglement, as measured either by p or S(N), is discussed to be due to the spatial propagation of magnons.Comment: 30 pages, 5 figures. The manuscript has been shortened and typos have been fixed. Data points of figures have been made larger in order to make them clearly visibl

    AFM pulling and the folding of donor-acceptor oligorotaxanes: phenomenology and interpretation

    Full text link
    The thermodynamic driving force in the self-assembly of the secondary structure of a class of donor-acceptor oligorotaxanes is elucidated by means of molecular dynamics simulations of equilibrium isometric single-molecule force spectroscopy AFM experiments. The oligorotaxanes consist of cyclobis(paraquat-\emph{p}-phenylene) rings threaded onto an oligomer of 1,5-dioxynaphthalenes linked by polyethers. The simulations are performed in a high dielectric medium using MM3 as the force field. The resulting force vs. extension isotherms show a mechanically unstable region in which the molecule unfolds and, for selected extensions, blinks in the force measurements between a high-force and a low-force regime. From the force vs. extension data the molecular potential of mean force is reconstructed using the weighted histogram analysis method and decomposed into energetic and entropic contributions. The simulations indicate that the folding of the oligorotaxanes is energetically favored but entropically penalized, with the energetic contributions overcoming the entropy penalty and effectively driving the self-assembly. In addition, an analogy between the single-molecule folding/unfolding events driven by the AFM tip and the thermodynamic theory of first-order phase transitions is discussed and general conditions, on the molecule and the cantilever, for the emergence of mechanical instabilities and blinks in the force measurements in equilibrium isometric pulling experiments are presented. In particular, it is shown that the mechanical stability properties observed during the extension are intimately related to the fluctuations in the force measurements.Comment: 42 pages, 17 figures, accepted to the Journal of Chemical Physic

    Neutron Fermi Liquids under the presence of a strong magnetic field with effective nuclear forces

    Get PDF
    Landau's Fermi Liquid parameters are calculated for non-superfluid pure neutron matter in the presence of a strong magnetic field at zero temperature. The particle-hole interactions in the system, where a net magnetization may be present, are characterized by these parameters in the framework of a multipolar formalism. We use either zero- or finite-range effective nuclear forces to describe the nuclear interaction. Using the obtained Fermi Liquid parameters, the effect of a strong magnetic field on some bulk magnitudes such as isothermal compressibility and spin susceptibility is also investigated.Comment: 20 pages, 10 figure

    Two hard spheres in a pore: Exact Statistical Mechanics for different shaped cavities

    Full text link
    The Partition function of two Hard Spheres in a Hard Wall Pore is studied appealing to a graph representation. The exact evaluation of the canonical partition function, and the one-body distribution function, in three different shaped pores are achieved. The analyzed simple geometries are the cuboidal, cylindrical and ellipsoidal cavities. Results have been compared with two previously studied geometries, the spherical pore and the spherical pore with a hard core. The search of common features in the analytic structure of the partition functions in terms of their length parameters and their volumes, surface area, edges length and curvatures is addressed too. A general framework for the exact thermodynamic analysis of systems with few and many particles in terms of a set of thermodynamic measures is discussed. We found that an exact thermodynamic description is feasible based in the adoption of an adequate set of measures and the search of the free energy dependence on the adopted measure set. A relation similar to the Laplace equation for the fluid-vapor interface is obtained which express the equilibrium between magnitudes that in extended systems are intensive variables. This exact description is applied to study the thermodynamic behavior of the two Hard Spheres in a Hard Wall Pore for the analyzed different geometries. We obtain analytically the external work, the pressure on the wall, the pressure in the homogeneous zone, the wall-fluid surface tension, the line tension and other similar properties

    Geometric description of BTZ black holes thermodynamics

    Full text link
    We study the properties of the space of thermodynamic equilibrium states of the Ba\~nados-Teitelboim-Zanelli (BTZ) black hole in (2+1)-gravity. We use the formalism of geometrothermodynamics to introduce in the space of equilibrium states a 22-dimensional thermodynamic metric whose curvature is non-vanishing, indicating the presence of thermodynamic interaction, and free of singularities, indicating the absence of phase transitions. Similar results are obtained for generalizations of the BTZ black hole which include a Chern-Simons term and a dilatonic field. Small logarithmic corrections of the entropy turn out to be represented by small corrections of the thermodynamic curvature, reinforcing the idea that thermodynamic curvature is a measure of thermodynamic interaction

    Bead, Hoop, and Spring as a Classical Spontaneous Symmetry Breaking Problem

    Full text link
    We describe a simple mechanical system that involves Spontaneous Symmetry Breaking. The system consists of two beads constrained to slide along a hoop and attached each other through a spring. When the hoop rotates about a fixed axis, the spring-beads system will change its equilibrium position as a function of the angular velocity. The system shows two different regions of symmetry separated by a critical point analogous to a second order transition. The competitive balance between the rotational diynamics and the interaction of the spring causes an Spontaneous Symmetry Breaking just as the balance between temperature and the spin interaction causes a transition in a ferromagnetic system. In addition, the gravitational potential act as an external force that causes explicit symmetry breaking and a feature of first-order transition. Near the transition point, the system exhibits a universal critical behavior where the changes of the parameter of order is described by the critical exponent beta =1/2 and the susceptibility by gamma =1. We also found a chaotic behavior near the critical point. Through a demostrative device we perform some qualitative observations that describe important features of the system.Comment: 7 pages, 2 tables, 30 figures, LaTeX2

    Magnetic properties and critical behavior of disordered Fe_{1-x}Ru_x alloys: a Monte Carlo approach

    Full text link
    We study the critical behavior of a quenched random-exchange Ising model with competing interactions on a bcc lattice. This model was introduced in the study of the magnetic behavior of Fe_{1-x}Ru_x alloys for ruthenium concentrations x=0%, x=4%, x=6%, and x=8%. Our study is carried out within a Monte Carlo approach, with the aid of a re-weighting multiple histogram technique. By means of a finite-size scaling analysis of several thermodynamic quantities, taking into account up to the leading irrelevant scaling field term, we find estimates of the critical exponents \alpha, \beta, \gamma, and \nu, and of the critical temperatures of the model. Our results for x=0% are in excellent agreement with those for the three-dimensional pure Ising model in the literature. We also show that our critical exponent estimates for the disordered cases are consistent with those reported for the transition line between paramagnetic and ferromagnetic phases of both randomly dilute and ±J\pm J Ising models. We compare the behavior of the magnetization as a function of temperature with that obtained by Paduani and Branco (2008), qualitatively confirming the mean-field result. However, the comparison of the critical temperatures obtained in this work with experimental measurements suggest that the model (initially obtained in a mean-field approach) needs to be modified

    Effective Free Energy for Individual Dynamics

    Full text link
    Physics and economics are two disciplines that share the common challenge of linking microscopic and macroscopic behaviors. However, while physics is based on collective dynamics, economics is based on individual choices. This conceptual difference is one of the main obstacles one has to overcome in order to characterize analytically economic models. In this paper, we build both on statistical mechanics and the game theory notion of Potential Function to introduce a rigorous generalization of the physicist's free energy, which includes individual dynamics. Our approach paves the way to analytical treatments of a wide range of socio-economic models and might bring new insights into them. As first examples, we derive solutions for a congestion model and a residential segregation model.Comment: 8 pages, 2 figures, presented at the ECCS'10 conferenc
    corecore