383 research outputs found

    Streaming Algorithms for Submodular Function Maximization

    Full text link
    We consider the problem of maximizing a nonnegative submodular set function f:2NR+f:2^{\mathcal{N}} \rightarrow \mathbb{R}^+ subject to a pp-matchoid constraint in the single-pass streaming setting. Previous work in this context has considered streaming algorithms for modular functions and monotone submodular functions. The main result is for submodular functions that are {\em non-monotone}. We describe deterministic and randomized algorithms that obtain a Ω(1p)\Omega(\frac{1}{p})-approximation using O(klogk)O(k \log k)-space, where kk is an upper bound on the cardinality of the desired set. The model assumes value oracle access to ff and membership oracles for the matroids defining the pp-matchoid constraint.Comment: 29 pages, 7 figures, extended abstract to appear in ICALP 201

    Budget Feasible Mechanisms for Experimental Design

    Full text link
    In the classical experimental design setting, an experimenter E has access to a population of nn potential experiment subjects i{1,...,n}i\in \{1,...,n\}, each associated with a vector of features xiRdx_i\in R^d. Conducting an experiment with subject ii reveals an unknown value yiRy_i\in R to E. E typically assumes some hypothetical relationship between xix_i's and yiy_i's, e.g., yiβxiy_i \approx \beta x_i, and estimates β\beta from experiments, e.g., through linear regression. As a proxy for various practical constraints, E may select only a subset of subjects on which to conduct the experiment. We initiate the study of budgeted mechanisms for experimental design. In this setting, E has a budget BB. Each subject ii declares an associated cost ci>0c_i >0 to be part of the experiment, and must be paid at least her cost. In particular, the Experimental Design Problem (EDP) is to find a set SS of subjects for the experiment that maximizes V(S) = \log\det(I_d+\sum_{i\in S}x_i\T{x_i}) under the constraint iSciB\sum_{i\in S}c_i\leq B; our objective function corresponds to the information gain in parameter β\beta that is learned through linear regression methods, and is related to the so-called DD-optimality criterion. Further, the subjects are strategic and may lie about their costs. We present a deterministic, polynomial time, budget feasible mechanism scheme, that is approximately truthful and yields a constant factor approximation to EDP. In particular, for any small δ>0\delta > 0 and ϵ>0\epsilon > 0, we can construct a (12.98, ϵ\epsilon)-approximate mechanism that is δ\delta-truthful and runs in polynomial time in both nn and loglogBϵδ\log\log\frac{B}{\epsilon\delta}. We also establish that no truthful, budget-feasible algorithms is possible within a factor 2 approximation, and show how to generalize our approach to a wide class of learning problems, beyond linear regression

    Adapting Quality Assurance to Adaptive Systems: The Scenario Coevolution Paradigm

    Full text link
    From formal and practical analysis, we identify new challenges that self-adaptive systems pose to the process of quality assurance. When tackling these, the effort spent on various tasks in the process of software engineering is naturally re-distributed. We claim that all steps related to testing need to become self-adaptive to match the capabilities of the self-adaptive system-under-test. Otherwise, the adaptive system's behavior might elude traditional variants of quality assurance. We thus propose the paradigm of scenario coevolution, which describes a pool of test cases and other constraints on system behavior that evolves in parallel to the (in part autonomous) development of behavior in the system-under-test. Scenario coevolution offers a simple structure for the organization of adaptive testing that allows for both human-controlled and autonomous intervention, supporting software engineering for adaptive systems on a procedural as well as technical level.Comment: 17 pages, published at ISOLA 201

    Submodular Maximization Meets Streaming: Matchings, Matroids, and More

    Full text link
    We study the problem of finding a maximum matching in a graph given by an input stream listing its edges in some arbitrary order, where the quantity to be maximized is given by a monotone submodular function on subsets of edges. This problem, which we call maximum submodular-function matching (MSM), is a natural generalization of maximum weight matching (MWM), which is in turn a generalization of maximum cardinality matching (MCM). We give two incomparable algorithms for this problem with space usage falling in the semi-streaming range---they store only O(n)O(n) edges, using O(nlogn)O(n\log n) working memory---that achieve approximation ratios of 7.757.75 in a single pass and (3+ϵ)(3+\epsilon) in O(ϵ3)O(\epsilon^{-3}) passes respectively. The operations of these algorithms mimic those of Zelke's and McGregor's respective algorithms for MWM; the novelty lies in the analysis for the MSM setting. In fact we identify a general framework for MWM algorithms that allows this kind of adaptation to the broader setting of MSM. In the sequel, we give generalizations of these results where the maximization is over "independent sets" in a very general sense. This generalization captures hypermatchings in hypergraphs as well as independence in the intersection of multiple matroids.Comment: 18 page

    Counterexample-Driven Synthesis for Probabilistic Program Sketches

    Full text link
    Probabilistic programs are key to deal with uncertainty in e.g. controller synthesis. They are typically small but intricate. Their development is complex and error prone requiring quantitative reasoning over a myriad of alternative designs. To mitigate this complexity, we adopt counterexample-guided inductive synthesis (CEGIS) to automatically synthesise finite-state probabilistic programs. Our approach leverages efficient model checking, modern SMT solving, and counterexample generation at program level. Experiments on practically relevant case studies show that design spaces with millions of candidate designs can be fully explored using a few thousand verification queries.Comment: Extended versio

    Thresholded Covering Algorithms for Robust and Max-Min Optimization

    Full text link
    The general problem of robust optimization is this: one of several possible scenarios will appear tomorrow, but things are more expensive tomorrow than they are today. What should you anticipatorily buy today, so that the worst-case cost (summed over both days) is minimized? Feige et al. and Khandekar et al. considered the k-robust model where the possible outcomes tomorrow are given by all demand-subsets of size k, and gave algorithms for the set cover problem, and the Steiner tree and facility location problems in this model, respectively. In this paper, we give the following simple and intuitive template for k-robust problems: "having built some anticipatory solution, if there exists a single demand whose augmentation cost is larger than some threshold, augment the anticipatory solution to cover this demand as well, and repeat". In this paper we show that this template gives us improved approximation algorithms for k-robust Steiner tree and set cover, and the first approximation algorithms for k-robust Steiner forest, minimum-cut and multicut. All our approximation ratios (except for multicut) are almost best possible. As a by-product of our techniques, we also get algorithms for max-min problems of the form: "given a covering problem instance, which k of the elements are costliest to cover?".Comment: 24 page

    Unveiling the intruder deformed 02+^+_2 state in 34^{34}Si

    Get PDF
    The 02+^+_2 state in 34^{34}Si has been populated at the {\sc Ganil/Lise3} facility through the β\beta-decay of a newly discovered 1+^+ isomer in 34^{34}Al of 26(1) ms half-life. The simultaneous detection of e+ee^+e^- pairs allowed the determination of the excitation energy E(02+^+_2)=2719(3) keV and the half-life T1/2_{1/2}=19.4(7) ns, from which an electric monopole strength of ρ2\rho^2(E0)=13.0(0.9)×103\times10^{-3} was deduced. The 21+^+_1 state is observed to decay both to the 01+^+_1 ground state and to the newly observed 02+^+_2 state (via a 607(2) keV transition) with a ratio R(21+^+_101+/21+\rightarrow0^+_1/2^+_102+\rightarrow0^+_2)=1380(717). Gathering all information, a weak mixing with the 01+^+_1 and a large deformation parameter of β\beta=0.29(4) are found for the 02+^+_2 state, in good agreement with shell model calculations using a new {\sc sdpf-u-mix} interaction allowing \textit{np-nh} excitations across the N=20 shell gap.Comment: 5 pages, 3 figures, accepted for publication in Physical Review Letter

    Engineering Trustworthy Self-Adaptive Software with Dynamic Assurance Cases

    Get PDF
    Building on concepts drawn from control theory, self-adaptive software handles environmental and internal uncertainties by dynamically adjusting its architecture and parameters in response to events such as workload changes and component failures. Self-adaptive software is increasingly expected to meet strict functional and non-functional requirements in applications from areas as diverse as manufacturing, healthcare and finance. To address this need, we introduce a methodology for the systematic ENgineering of TRUstworthy Self-adaptive sofTware (ENTRUST). ENTRUST uses a combination of (1) design-time and runtime modelling and verification, and (2) industry-adopted assurance processes to develop trustworthy self-adaptive software and assurance cases arguing the suitability of the software for its intended application. To evaluate the effectiveness of our methodology, we present a tool-supported instance of ENTRUST and its use to develop proof-of-concept self-adaptive software for embedded and service-based systems from the oceanic monitoring and e-finance domains, respectively. The experimental results show that ENTRUST can be used to engineer self-adaptive software systems in different application domains and to generate dynamic assurance cases for these systems

    Stochastic Vehicle Routing with Recourse

    Full text link
    We study the classic Vehicle Routing Problem in the setting of stochastic optimization with recourse. StochVRP is a two-stage optimization problem, where demand is satisfied using two routes: fixed and recourse. The fixed route is computed using only a demand distribution. Then after observing the demand instantiations, a recourse route is computed -- but costs here become more expensive by a factor lambda. We present an O(log^2 n log(n lambda))-approximation algorithm for this stochastic routing problem, under arbitrary distributions. The main idea in this result is relating StochVRP to a special case of submodular orienteering, called knapsack rank-function orienteering. We also give a better approximation ratio for knapsack rank-function orienteering than what follows from prior work. Finally, we provide a Unique Games Conjecture based omega(1) hardness of approximation for StochVRP, even on star-like metrics on which our algorithm achieves a logarithmic approximation.Comment: 20 Pages, 1 figure Revision corrects the statement and proof of Theorem 1.

    Maximum gradient embeddings and monotone clustering

    Full text link
    Let (X,d_X) be an n-point metric space. We show that there exists a distribution D over non-contractive embeddings into trees f:X-->T such that for every x in X, the expectation with respect to D of the maximum over y in X of the ratio d_T(f(x),f(y)) / d_X(x,y) is at most C (log n)^2, where C is a universal constant. Conversely we show that the above quadratic dependence on log n cannot be improved in general. Such embeddings, which we call maximum gradient embeddings, yield a framework for the design of approximation algorithms for a wide range of clustering problems with monotone costs, including fault-tolerant versions of k-median and facility location.Comment: 25 pages, 2 figures. Final version, minor revision of the previous one. To appear in "Combinatorica
    corecore