191 research outputs found

    In vivo observation of chlorophyll fluorescence quenching induced by gold nanoparticles

    Get PDF
    To our knowledge, the present work reports the first in vivo observation of chlorophyll a fluorescence quenching induced by gold nanoparticles. Laser-induced fluorescence spectroscopy was used to collect in vivo chlorophyll a fluorescence, using a portable optical fiber-based spectrofluorimeter. Fluorescence quenching was observed for all plants submitted to the gold nanoparticle treatment, and both excitation wavelengths, 405 nm and 532 nm, were capable of detecting interactions between gold nanoparticles and plants. Our results also suggest that gold nanoparticles were able to translocate and accumulate in the soybean plants after seed inoculation.CNPqFUNDECTINCT - INO

    Endothelin-1 receptor antagonists protect the kidney against the nephrotoxicity induced by cyclosporine-A in normotensive and hypertensive rats

    Get PDF
    Cyclosporin-A (CsA) is an immunosuppressant associated with acute kidney injury and chronic kidney disease. Nephrotoxicity associated with CsA involves the increase in afferent and efferent arteriole resistance, decreased renal blood flow (RBF) and glomerular filtration. The aim of this study was to evaluate the effect of Endothelin-1 (ET-1) receptor blockade with bosentan (BOS) and macitentan (MAC) antagonists on altered renal function induced by CsA in normotensive and hypertensive animals. Wistar and genetically hypertensive rats (SHR) were separated into control group, CsA group that received intraperitoneal injections of CsA (40 mg/kg) for 15 days, CsA+BOS and CsA+MAC that received CsA and BOS (5 mg/kg) or MAC (25 mg/kg) by gavage for 15 days. Plasma creatinine and urea, mean arterial pressure (MAP), RBF and renal vascular resistance (RVR), and immunohistochemistry for ET-1 in the kidney cortex were measured. CsA decreased renal function, as shown by increased creatinine and urea. There was a decrease in RBF and an increase in MAP and RVR in normotensive and hypertensive animals. These effects were partially reversed by ET-1 antagonists, especially in SHR where increased ET-1 production was observed in the kidney. Most MAC effects were similar to BOS, but BOS seemed to be better at reversing cyclosporine-induced changes in renal function in hypertensive animals. The results of this work suggested the direct participation of ET-1 in renal hemodynamics changes induced by cyclosporin in normotensive and hypertensive rats. The antagonists of ET-1 MAC and BOS reversed part of these effects.Univ Fed Sao Paulo, Disciplina Nefrol, Dept Med, Sao Paulo, SP, BrazilUniv Cruzeiro Sul, Programa Interdisciplinar Ciencias Saude, Inst Ciencias Atividade Fis & Esporte, Sao Paulo, SP, BrazilUniv Sao Paulo, LEMA, Escola Enfermagem, Sao Paulo, SP, BrazilUniv Fed Sao Paulo, Dept Enfermagem Clin & Cirurg, Escola Paulista Enfermagem, Sao Paulo, SP, BrazilUniv Fed Sao Paulo, Disciplina Nefrol, Dept Med, Sao Paulo, SP, BrazilUniv Fed Sao Paulo, Dept Enfermagem Clin & Cirurg, Escola Paulista Enfermagem, Sao Paulo, SP, BrazilWeb of Scienc

    Effective killing of bacteria under blue-light irradiation promoted by green synthesized silver nanoparticles loaded on reduced graphene oxide sheets

    Get PDF
    Graphene oxide (GO) materials loaded with silver nanoparticles (AgNPs) have drawn considerable attention due to their capacity to efficiently inactivate bacteria though a multifaceted mechanism of action, as well as for presenting a synergetic effect against bacteria when compared to the activity of AgNPs and GO alone. In this investigation, we present an inexpensive and environmentally-friendly method for synthesizing reduced GO sheets coated with silver nanoparticles (AgNPs/r-GO) using a coffee extract solution as a green reducing agent. The physical and chemical properties of the produced materials were extensively characterized by scanning electron microscopy (SEM), field-emission gun transmission electron microscopy (FEG-TEM), ultraviolet and visible absorption (UV–Vis), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), inductively coupled plasma-optical emission spectroscopy (ICP-OES) and ion release determination. The results demonstrated that AgNPs/r-GO composites were successfully produced, revealing the formation of micrometer-sized r-GO sheets decorated by AgNPs of approximately 70 nm diameter. Finally, bactericidal and photobactericidal effects of the AgNPs/r-GO composites were tested against Staphylococcus aureus, in which the results showed that the composites presented antimicrobial and photoantimicrobial activities. Moreover, our results demonstrated for the first time, to our knowledge, that an efficient process of bacterial inactivation can be achieved by using AgNPs/r-GO composites under blue light irradiation as a result of three different bacterial killing processes: (i) chemical effect promoted by Ag+ ion release from AgNPs; (ii) photocatalytic activity induced by AgNPs/r-GO composites, enhancing the bacterial photoinactivation due to the excited-Plasmons of the AgNPs when anchored on r-GO; and (iii) photodynamic effect produced by bacterial endogenous photosensitizers under blue-light irradiation. In summary, the present findings demonstrated that AgNPs/r-GO can be obtained by a non-toxic procedure with great potential for biomedical-related applications

    A cyclopalladated complex interacts with mitochondrial membrane thiol-groups and induces the apoptotic intrinsic pathway in murine and cisplatin-resistant human tumor cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Systemic therapy for cancer metastatic lesions is difficult and generally renders a poor clinical response. Structural analogs of cisplatin, the most widely used synthetic metal complexes, show toxic side-effects and tumor cell resistance. Recently, palladium complexes with increased stability are being investigated to circumvent these limitations, and a biphosphinic cyclopalladated complex {Pd<sub>2 </sub>[<it>S<sub>(-)</sub></it>C<sup>2</sup>, N-dmpa]<sub>2 </sub>(μ-dppe)Cl<sub>2</sub>} named C7a efficiently controls the subcutaneous development of B16F10-Nex2 murine melanoma in syngeneic mice. Presently, we investigated the melanoma cell killing mechanism induced by C7a, and extended preclinical studies.</p> <p>Methods</p> <p>B16F10-Nex2 cells were treated <it>in vitro </it>with C7a in the presence/absence of DTT, and several parameters related to apoptosis induction were evaluated. Preclinical studies were performed, and mice were endovenously inoculated with B16F10-Nex2 cells, intraperitoneally treated with C7a, and lung metastatic nodules were counted. The cytotoxic effects and the respiratory metabolism were also determined in human tumor cell lines treated <it>in vitro </it>with C7a.</p> <p>Results</p> <p>Cyclopalladated complex interacts with thiol groups on the mitochondrial membrane proteins, causes dissipation of the mitochondrial membrane potential, and induces Bax translocation from the cytosol to mitochondria, colocalizing with a mitochondrial tracker. C7a also induced an increase in cytosolic calcium concentration, mainly from intracellular compartments, and a significant decrease in the ATP levels. Activation of effector caspases, chromatin condensation and DNA degradation, suggested that C7a activates the apoptotic intrinsic pathway in murine melanoma cells. In the preclinical studies, the C7a complex protected against murine metastatic melanoma and induced death in several human tumor cell lineages <it>in vitro</it>, including cisplatin-resistant ones. The mitochondria-dependent cell death was also induced by C7a in human tumor cells.</p> <p>Conclusions</p> <p>The cyclopalladated C7a complex is an effective chemotherapeutic anticancer compound against primary and metastatic murine and human tumors, including cisplatin-resistant cells, inducing apoptotic cell death via the intrinsic pathway.</p

    Influência do biochar e da adubação nitrogenada na capacidade de Rhizobium tropici em promover o crescimento do feijão.

    Get PDF
    O biochar é um material rico em carbono, a sua aplicação tem potencial de alterar as propriedades físicas, químicas e microbiológicas do solo. Nesse estudo foi avaliado o efeito do biochar produzido a partir de resíduos da colheita de eucalipto e da adubação nitrogenada na capacidade do Rhizobium tropici em promover o desenvolvimento, a produtividade da cultura do feijão e influenciar a comunidade microbiana envolvida no ciclo do nitrogênio. O experimento foi realizado em casa de vegetação em blocos aleatorizados, com doses de biochar (0, 5, 10, 15, 20 Mg/ha), presença ou ausência de adubação nitrogenada, com ou sem inoculação de R. tropici. Dentre as variáveis analisadas, a altura de planta e o peso de 100 grãos, foram as que melhor diferenciaram os tratamentos. Sendo nas menores doses de biochar (0 e 5 Mg/ha) foram alcançados os maiores valores de produtividade do feijoeiro e o maior número de microrganismos fixadores biológicos de nitrogênio. Já na presença das maiores doses de biochar obteve-se um aumento na quantificação de bactérias amonificadoras
    corecore