614 research outputs found
Detection of Pristine Gas Two Billion Years after the Big Bang
In the current cosmological model, only the three lightest elements were
created in the first few minutes after the Big Bang; all other elements were
produced later in stars. To date, however, heavy elements have been observed in
all astrophysical environments. We report the detection of two gas clouds with
no discernible elements heavier than hydrogen. These systems exhibit the lowest
heavy-element abundance in the early universe and thus are potential fuel for
the most metal poor halo stars. The detection of deuterium in one system at the
level predicted by primordial nucleosynthesis provides a direct confirmation of
the standard cosmological model. The composition of these clouds further
implies that the transport of heavy elements from galaxies to their
surroundings is highly inhomogeneous.Comment: 32 pages, 11 figures, SOM included. To appear in Scienc
Lithium abundance and 6Li/7Li ratio in the active giant HD123351 I. A comparative analysis of 3D and 1D NLTE line-profile fits
Current three-dimensional (3D) hydrodynamical model atmospheres together with
NLTE spectrum synthesis, permit to derive reliable atomic and isotopic chemical
abundances from high-resolution stellar spectra. Not much is known about the
presence of the fragile 6Li isotope in evolved solar-metallicity RGB stars, not
to mention its production in magnetically active targets like HD123351. From
fits of the observed CFHT spectrum with synthetic line profiles based on 1D and
3D model atmospheres, we seek to estimate the abundance of the 6Li isotope and
to place constraints on its origin. We derive A(Li) and the 6Li/7Li isotopic
ratio by fitting different synthetic spectra to the Li-line region of a
high-resolution CFHT spectrum (R=120 000, S/R=400). The synthetic spectra are
computed with four different line lists, using in parallel 3D hydrodynamical
CO5BOLD and 1D LHD model atmospheres and treating the line formation of the
lithium components in non-LTE (NLTE). We find A(Li)=1.69+/-0.11 dex and
6Li/7Li=8.0+/-4.4 % in 3D-NLTE, using the line list of Mel\'endez et al.
(2012), updated with new atomic data for V I, which results in the best fit of
the lithium line profile of HD123351. Two other line lists lead to similar
results but with inferior fit qualities. Our 2-sigma detection of the 6Li
isotope is the result of a careful statistical analysis and the visual
inspection of each achieved fit. Since the presence of a significant amount of
6Li in the atmosphere of a cool evolved star is not expected in the framework
of standard stellar evolution theory, non-standard, external lithium production
mechanisms, possibly related to stellar activity or a recent accretion of rocky
material, need to be invoked to explain the detection of 6Li in HD123351.Comment: 16 pages, 11 figures. Accepted for publication in A&
The solar photospheric abundance of hafnium and thorium. Results from CO5BOLD 3D hydrodynamic model atmospheres
Context: The stable element hafnium (Hf) and the radioactive element thorium
(Th) were recently suggested as a suitable pair for radioactive dating of
stars. The applicability of this elemental pair needs to be established for
stellar spectroscopy. Aims: We aim at a spectroscopic determination of the
abundance of Hf and Th in the solar photosphere based on a \cobold 3D
hydrodynamical model atmosphere. We put this into a wider context by
investigating 3D abundance corrections for a set of G- and F-type dwarfs.
Method: High-resolution, high signal-to-noise solar spectra were compared to
line synthesis calculations performed on a solar CO5BOLD model. For the other
atmospheres, we compared synthetic spectra of CO5BOLD 3D and associated 1D
models. Results: For Hf we find a photospheric abundance A(Hf)=0.87+-0.04, in
good agreement with a previous analysis, based on 1D model atmospheres. The
weak Th ii 401.9 nm line constitutes the only Th abundance indicator available
in the solar spectrum. It lies in the red wing of an Ni-Fe blend exhibiting a
non-negligible convective asymmetry. Accounting for the asymmetry-related
additional absorption, we obtain A(Th)=0.09+-0.03, consistent with the
meteoritic abundance, and about 0.1 dex lower than obtained in previous
photospheric abundance determinations. Conclusions: Only for the second time,
to our knowledge, has am non-negligible effect of convective line asymmetries
on an abundance derivation been highlighted. Three-dimensional hydrodynamical
simulations should be employed to measure Th abundances in dwarfs if similar
blending is present, as in the solar case. In contrast, 3D effects on Hf
abundances are small in G- to mid F-type dwarfs and sub-giants, and 1D model
atmospheres can be conveniently used.Comment: A&A, in pres
The solar photospheric abundance of carbon.Analysis of atomic carbon lines with the CO5BOLD solar model
The use of hydrodynamical simulations, the selection of atomic data, and the
computation of deviations from local thermodynamical equilibrium for the
analysis of the solar spectra have implied a downward revision of the solar
metallicity. We are in the process of using the latest simulations computed
with the CO5BOLD code to reassess the solar chemical composition. We determine
the solar photospheric carbon abundance by using a radiation-hydrodynamical
CO5BOLD model, and compute the departures from local thermodynamical
equilibrium by using the Kiel code. We measure equivalent widths of atomic CI
lines on high resolution, high signal-to-noise ratio solar atlases. Deviations
from local thermodynamic equilibrium are computed in 1D with the Kiel code. Our
recommended value for the solar carbon abundance, relies on 98 independent
measurements of observed lines and is A(C)=8.50+-0.06, the quoted error is the
sum of statistical and systematic error. Combined with our recent results for
the solar oxygen and nitrogen abundances this implies a solar metallicity of
Z=0.0154 and Z/X=0.0211. Our analysis implies a solar carbon abundance which is
about 0.1 dex higher than what was found in previous analysis based on
different 3D hydrodynamical computations. The difference is partly driven by
our equivalent width measurements (we measure, on average, larger equivalent
widths with respect to the other work based on a 3D model), in part it is
likely due to the different properties of the hydrodynamical simulations and
the spectrum synthesis code. The solar metallicity we obtain from the CO5BOLD
analyses is in slightly better agreement with the constraints of
helioseismology than the previous 3D abundance results. (Abridged)Comment: Astronomy and Astrophysics, accepte
6Li detection in metal-poor stars: can 3D model atmospheres solve the second lithium problem?
The presence of 6Li in the atmospheres of metal-poor halo stars is usually
inferred from the detection of a subtle extra depression in the red wing of the
7Li doublet line at 670.8 nm. However, the intrinsic line asymmetry caused by
convective flows in the photospheres of cool stars is almost indistinguishable
from the asymmetry produced by a weak 6Li blend on a (presumed) symmetric 7Li
profile. Previous determinations of the 6Li/ 7Li isotopic ratio based on 1D
model atmospheres, ignoring the convection-induced line asymmetry, must
therefore be considered as upper limits. By comparing synthetic 1D LTE and 3D
non-LTE line profiles of the Li 670.8 nm feature, we quantify the differential
effect of the convective line asymmetry on the derived 6Li abundance as a
function of effective temperature, gravity, and metallicity. As expected, we
find that the asymmetry effect systematically reduces the resulting 6Li/7Li
ratios. Depending on the stellar parameters, the 3D-1D offset in 6Li/7Li ranges
between -0.005 and -0.020. When this purely theoretical correction is taken
into account for the Asplund 2006 sample of stars, the number of significant
6Li detections decreases from 9 to 5 (2 sigma criterion), or from 5 to 2 (3
sigma criterion).
We also present preliminary results of a re-analysis of high-resolution, high
S/N spectra of individual metal-poor turn-off stars, to see whether the "second
Lithium problem" actually disappears when accounting properly for convection
and non-LTE line formation in 3D stellar atmospheres. Out of 8 stars, HD84937
seems to be the only significant (2 sigma) detection of 6Li. In view of our
results, the existence of a 6Li plateau appears questionable.Comment: To appear in the proceedings of 'Lithium in the Cosmos', Paris, Feb.
27-29, 2012, Memorie della Societa' Astronomica Italiana Supplement
Granulation properties of giants, dwarfs, and white dwarfs from the CIFIST 3D model atmosphere grid
3D model atmospheres for giants, dwarfs, and white dwarfs, computed with the
CO5BOLD code and part of the CIFIST grid, have been used for spectroscopic and
asteroseismic studies. Unlike existing plane-parallel 1D structures, these
simulations predict the spatially and temporally resolved emergent intensity so
that granulation can be analysed, which provides insights on how convective
energy transfer operates in stars. The wide range of atmospheric parameters of
the CIFIST 3D simulations (3600 < Teff (K) < 13,000 and 1 < log g < 9) allows
the comparison of convective processes in significantly different environments.
We show that the relative intensity contrast is correlated with both the Mach
and Peclet numbers in the photosphere. The horizontal size of granules varies
between 3 and 10 times the local pressure scale height, with a tight
correlation between the factor and the Mach number of the flow. Given that
convective giants, dwarfs, and white dwarfs cover the same range of Mach and
Peclet numbers, we conclude that photospheric convection operates in a very
similar way in those objects.Comment: 16 pages, 17 figures, 37 pages online appendix, accepted for
publication in Astronomy and Astrophysic
- …