78 research outputs found

    Interpreting outcome following foot surgery in people with rheumatoid arthritis

    Get PDF
    BACKGROUND: Foot surgery is common in RA but the current lack of understanding of how patients interpret outcomes inhibits evaluation of procedures in clinical and research settings. This study aimed to explore which factors are important to people with RA when they evaluate the outcome of foot and ankle surgery. METHODS AND RESULTS: Semi structured interviews with 11 RA participants who had mixed experiences of foot surgery were conducted and analysed using thematic analysis. Responses showed that while participants interpreted surgical outcome in respect to a multitude of factors, five major themes emerged: functional ability, participation, appearance of feet and footwear, surgeons' opinion, and pain. Participants interpreted levels of physical function in light of other aspects of their disease, reflecting on relative change from their preoperative state more than absolute levels of ability. Appearance was important to almost all participants: physical appearance, foot shape, and footwear were closely interlinked, yet participants saw these as distinct concepts and frequently entered into a defensive repertoire, feeling the need to justify that their perception of outcome was not about cosmesis. Surgeons' post-operative evaluation of the procedure was highly influential and made a lasting impression, irrespective of how the outcome compared to the participants' initial goals. Whilst pain was important to almost all participants, it had the greatest impact upon them when it interfered with their ability to undertake valued activities. CONCLUSIONS: People with RA interpret the outcome of foot surgery using multiple interrelated factors, particularly functional ability, appearance and surgeons' appraisal of the procedure. While pain was often noted, this appeared less important than anticipated. These factors can help clinicians in discussing surgical options in patients

    Non-Bulk-Like Solvent Behavior in the Ribosome Exit Tunnel

    Get PDF
    As nascent proteins are synthesized by the ribosome, they depart via an exit tunnel running through the center of the large subunit. The exit tunnel likely plays an important part in various aspects of translation. Although water plays a key role in many bio-molecular processes, the nature of water confined to the exit tunnel has remained unknown. Furthermore, solvent in biological cavities has traditionally been characterized as either a continuous dielectric fluid, or a discrete tightly bound molecule. Using atomistic molecular dynamics simulations, we predict that the thermodynamic and kinetic properties of water confined within the ribosome exit tunnel are quite different from this simple two-state model. We find that the tunnel creates a complex microenvironment for the solvent resulting in perturbed rotational dynamics and heterogenous dielectric behavior. This gives rise to a very rugged solvation landscape and significantly retarded solvent diffusion. We discuss how this non-bulk-like solvent is likely to affect important biophysical processes such as sequence dependent stalling, co-translational folding, and antibiotic binding. We conclude with a discussion of the general applicability of these results to other biological cavities

    Heterologous Protein Expression Is Enhanced by Harmonizing the Codon Usage Frequencies of the Target Gene with those of the Expression Host

    Get PDF
    Synonymous codon replacement can change protein structure and function, indicating that protein structure depends on DNA sequence. During heterologous protein expression, low expression or formation of insoluble aggregates may be attributable to differences in synonymous codon usage between expression and natural hosts. This discordance may be particularly important during translation of the domain boundaries (link/end segments) that separate elements of higher ordered structure. Within such regions, ribosomal progression slows as the ribosome encounters clusters of infrequently used codons that preferentially encode a subset of amino acids. To replicate the modulation of such localized translation rates during heterologous expression, we used known relationships between codon usage frequencies and secondary protein structure to develop an algorithm (“codon harmonization”) for identifying regions of slowly translated mRNA that are putatively associated with link/end segments. It then recommends synonymous replacement codons having usage frequencies in the heterologous expression host that are less than or equal to the usage frequencies of native codons in the native expression host. For protein regions other than these putative link/end segments, it recommends synonymous substitutions with codons having usage frequencies matched as nearly as possible to the native expression system. Previous application of this algorithm facilitated E. coli expression, manufacture and testing of two Plasmodium falciparum vaccine candidates. Here we describe the algorithm in detail and apply it to E. coli expression of three additional P. falciparum proteins. Expression of the “recoded” genes exceeded that of the native genes by 4- to 1,000-fold, representing levels suitable for vaccine manufacture. The proteins were soluble and reacted with a variety of functional conformation-specific mAbs suggesting that they were folded properly and had assumed native conformation. Codon harmonization may further provide a general strategy for improving the expression of soluble functional proteins during heterologous expression in hosts other than E. coli

    Transmembrane but not soluble helices fold inside the ribosome tunnel

    Get PDF
    Integral membrane proteins are assembled into the ER membrane via a continuous ribosome-translocon channel. The hydrophobicity and thickness of the core of the membrane bilayer leads to the expectation that transmembrane (TM) segments minimize the cost of harbouring polar polypeptide backbones by adopting a regular pattern of hydrogen bonds to form α-helices before integration. Co-translational folding of nascent chains into an α-helical conformation in the ribosomal tunnel has been demonstrated previously, but the features governing this folding are not well understood. In particular, little is known about what features influence the propensity to acquire α-helical structure in the ribosome. Using in vitro translation of truncated nascent chains trapped within the ribosome tunnel and molecular dynamics simulations, we show that folding in the ribosome is attained for TM helices but not for soluble helices, presumably facilitating SRP (signal recognition particle) recognition and/or a favourable conformation for membrane integration upon translocon entry

    Illuminating the life of GPCRs

    Get PDF
    The investigation of biological systems highly depends on the possibilities that allow scientists to visualize and quantify biomolecules and their related activities in real-time and non-invasively. G-protein coupled receptors represent a family of very dynamic and highly regulated transmembrane proteins that are involved in various important physiological processes. Since their localization is not confined to the cell surface they have been a very attractive "moving target" and the understanding of their intracellular pathways as well as the identified protein-protein-interactions has had implications for therapeutic interventions. Recent and ongoing advances in both the establishment of a variety of labeling methods and the improvement of measuring and analyzing instrumentation, have made fluorescence techniques to an indispensable tool for GPCR imaging. The illumination of their complex life cycle, which includes receptor biosynthesis, membrane targeting, ligand binding, signaling, internalization, recycling and degradation, will provide new insights into the relationship between spatial receptor distribution and function. This review covers the existing technologies to track GPCRs in living cells. Fluorescent ligands, antibodies, auto-fluorescent proteins as well as the evolving technologies for chemical labeling with peptide- and protein-tags are described and their major applications concerning the GPCR life cycle are presented
    corecore