296 research outputs found

    Design of Experiments for Screening

    Full text link
    The aim of this paper is to review methods of designing screening experiments, ranging from designs originally developed for physical experiments to those especially tailored to experiments on numerical models. The strengths and weaknesses of the various designs for screening variables in numerical models are discussed. First, classes of factorial designs for experiments to estimate main effects and interactions through a linear statistical model are described, specifically regular and nonregular fractional factorial designs, supersaturated designs and systematic fractional replicate designs. Generic issues of aliasing, bias and cancellation of factorial effects are discussed. Second, group screening experiments are considered including factorial group screening and sequential bifurcation. Third, random sampling plans are discussed including Latin hypercube sampling and sampling plans to estimate elementary effects. Fourth, a variety of modelling methods commonly employed with screening designs are briefly described. Finally, a novel study demonstrates six screening methods on two frequently-used exemplars, and their performances are compared

    Biochemical, Structural and Molecular Dynamics Analyses of the Potential Virulence Factor RipA from Yersinia pestis

    Get PDF
    Human diseases are attributed in part to the ability of pathogens to evade the eukaryotic immune systems. A subset of these pathogens has developed mechanisms to survive in human macrophages. Yersinia pestis, the causative agent of the bubonic plague, is a predominately extracellular pathogen with the ability to survive and replicate intracellularly. A previous study has shown that a novel rip (required for intracellular proliferation) operon (ripA, ripB and ripC) is essential for replication and survival of Y. pestis in postactivated macrophages, by playing a role in lowering macrophage-produced nitric oxide (NO) levels. A bioinformatics analysis indicates that the rip operon is conserved among a distally related subset of macrophage-residing pathogens, including Burkholderia and Salmonella species, and suggests that this previously uncharacterized pathway is also required for intracellular survival of these pathogens. The focus of this study is ripA, which encodes for a protein highly homologous to 4-hydroxybutyrate-CoA transferase; however, biochemical analysis suggests that RipA functions as a butyryl-CoA transferase. The 1.9 Å X-ray crystal structure reveals that RipA belongs to the class of Family I CoA transferases and exhibits a unique tetrameric state. Molecular dynamics simulations are consistent with RipA tetramer formation and suggest a possible gating mechanism for CoA binding mediated by Val227. Together, our structural characterization and molecular dynamic simulations offer insights into acyl-CoA specificity within the active site binding pocket, and support biochemical results that RipA is a butyryl-CoA transferase. We hypothesize that the end product of the rip operon is butyrate, a known anti-inflammatory, which has been shown to lower NO levels in macrophages. Thus, the results of this molecular study of Y. pestis RipA provide a structural platform for rational inhibitor design, which may lead to a greater understanding of the role of RipA in this unique virulence pathway

    Anticipation of guilt for everyday moral transgressions : the role of the anterior insula and the influence of interpersonal psychopathic traits

    Get PDF
    Psychopathy is a personality disorder characterised by atypical moral behaviour likely rooted in atypical affective/motivational processing, as opposed to an inability to judge the wrongness of an action. Guilt is a moral emotion believed to play a crucial role in adherence to moral and social norms, but the mechanisms by which guilt (or lack thereof) may influence behaviour in individuals with high levels of psychopathic traits are unclear. We measured neural responses during the anticipation of guilt about committing potential everyday moral transgressions, and tested the extent to which these varied with psychopathic traits. We found a significant interaction between the degree to which anticipated guilt was modulated in the anterior insula and interpersonal psychopathic traits: anterior insula modulation of anticipated guilt was weaker in individuals with higher levels of these traits. Data from a second sample confirmed that this pattern of findings was specific to the modulation of anticipated guilt and not related to the perceived wrongness of the transgression. These results suggest a central role for the anterior insula in coding the anticipation of guilt regarding potential moral transgressions and advance our understanding of the neurocognitive mechanisms that may underlie propensity to antisocial behaviour

    Ifosfamide, cisplatin and etoposide combination in locally advanced inoperable non-small-cell lung cancer: a phase II study

    Get PDF
    From March 1993 to February 1997, 43 eligible patients with inoperable stage IIIA (ten patients) and stage IIIB (33 patients), histologically confirmed NSCLC received 3 courses of the ICE combination (ifosfamide 1.5 g m−2 and mesna 750 mg m−2 two times a day, cisplatin 25 mg m−2 and etoposide 100 mg m−2, all administered intravenously (i.v.) on days 1–3 every 3 weeks) with G-CSF support. After three cycles, patients were submitted to radical surgery or received two additional courses of the ICE regimen and/or curative radiotherapy. Grade 3–4 neutropenia occurred in 21% of 114 evaluable courses, but was of short duration, leading to neutropenic fever in 5% of the courses. Severe thrombocytopenia and anaemia were observed in 13% and 3% of the courses respectively. Non-haematological toxicity was generally mild with only two episodes of reversible renal impairment. The overall response rate after three chemotherapy courses was 69% (28 partial responses, one complete response). Ten patients (8/10 patients in stage IIIA, 2/33 patients in stage IIIB) underwent radical surgery. Median TTP for patients not undergoing surgery (n = 33) was 8 months (range 3–34+); median DFS for patients rendered NED by surgery (n = 10) was 26 months (range 1–54+). Median OS for the entire group was 12.5 months (range 2–57+). The ICE regimen is active in locally advanced NSCLC with acceptable toxicity and warrants further exploration as induction chemotherapy in larger series. © 1999 Cancer Research Campaig

    Behavioral and Immune Responses to Infection Require Gαq- RhoA Signaling in C. elegans

    Get PDF
    Following pathogen infection the hosts' nervous and immune systems react with coordinated responses to the danger. A key question is how the neuronal and immune responses to pathogens are coordinated, are there common signaling pathways used by both responses? Using C. elegans we show that infection by pathogenic strains of M. nematophilum, but not exposure to avirulent strains, triggers behavioral and immune responses both of which require a conserved Gαq-RhoGEF Trio-Rho signaling pathway. Upon infection signaling by the Gαq pathway within cholinergic motorneurons is necessary and sufficient to increase release of the neurotransmitter acetylcholine and increase locomotion rates and these behavioral changes result in C. elegans leaving lawns of M. nematophilum. In the immune response to infection signaling by the Gαq pathway within rectal epithelial cells is necessary and sufficient to cause changes in cell morphology resulting in tail swelling that limits the infection. These Gαq mediated behavioral and immune responses to infection are separate, act in a cell autonomous fashion and activation of this pathway in the appropriate cells can trigger these responses in the absence of infection. Within the rectal epithelium the Gαq signaling pathway cooperates with a Ras signaling pathway to activate a Raf-ERK-MAPK pathway to trigger the cell morphology changes, whereas in motorneurons Gαq signaling triggers behavioral responses independent of Ras signaling. Thus, a conserved Gαq pathway cooperates with cell specific factors in the nervous and immune systems to produce appropriate responses to pathogen. Thus, our data suggests that ligands for Gq coupled receptors are likely to be part of the signals generated in response to M. nematophilum infection

    App-based COVID-19 syndromic surveillance and prediction of hospital admissions in COVID Symptom Study Sweden

    Get PDF
    The app-based COVID Symptom Study was launched in Sweden in April 2020 to contribute to real-time COVID-19 surveillance. We enrolled 143,531 study participants (≥18 years) who contributed 10.6 million daily symptom reports between April 29, 2020 and February 10, 2021. Here, we include data from 19,161 self-reported PCR tests to create a symptom-based model to estimate the individual probability of symptomatic COVID-19, with an AUC of 0.78 (95% CI 0.74–0.83) in an external dataset. These individual probabilities are employed to estimate daily regional COVID-19 prevalence, which are in turn used together with current hospital data to predict next week COVID-19 hospital admissions. We show that this hospital prediction model demonstrates a lower median absolute percentage error (MdAPE: 25.9%) across the five most populated regions in Sweden during the first pandemic wave than a model based on case notifications (MdAPE: 30.3%). During the second wave, the error rates are similar. When we apply the same model to an English dataset, not including local COVID-19 test data, we observe MdAPEs of 22.3% and 19.0% during the first and second pandemic waves, respectively, highlighting the transferability of the prediction model

    Pseudomonas aeruginosa Suppresses Host Immunity by Activating the DAF-2 Insulin-Like Signaling Pathway in Caenorhabditis elegans

    Get PDF
    Some pathogens have evolved mechanisms to overcome host immune defenses by inhibiting host defense signaling pathways and suppressing the expression of host defense effectors. We present evidence that Pseudomonas aeruginosa is able to suppress the expression of a subset of immune defense genes in the animal host Caenorhabditis elegans by activating the DAF-2/DAF-16 insulin-like signaling pathway. The DAF-2/DAF-16 pathway is important for the regulation of many aspects of organismal physiology, including metabolism, stress response, longevity, and immune function. We show that intestinal expression of DAF-16 is required for resistance to P. aeruginosa and that the suppression of immune defense genes is dependent on the insulin-like receptor DAF-2 and the FOXO transcription factor DAF-16. By visualizing the subcellular localization of DAF-16::GFP fusion protein in live animals during infection, we show that P. aeruginosa–mediated downregulation of a subset of immune genes is associated with the ability to translocate DAF-16 from the nuclei of intestinal cells. Suppression of DAF-16 is mediated by an insulin-like peptide, INS-7, which functions upstream of DAF-2. Both the inhibition of DAF-16 and downregulation of DAF-16–regulated genes, such as thn-2, lys-7, and spp-1, require the P. aeruginosa two-component response regulator GacA and the quorum-sensing regulators LasR and RhlR and are not observed during infection with Salmonella typhimurium or Enterococcus faecalis. Our results reveal a new mechanism by which P. aeruginosa suppresses host immune defense

    Candida albicans Infection of Caenorhabditis elegans Induces Antifungal Immune Defenses

    Get PDF
    Candida albicans yeast cells are found in the intestine of most humans, yet this opportunist can invade host tissues and cause life-threatening infections in susceptible individuals. To better understand the host factors that underlie susceptibility to candidiasis, we developed a new model to study antifungal innate immunity. We demonstrate that the yeast form of C. albicans establishes an intestinal infection in Caenorhabditis elegans, whereas heat-killed yeast are avirulent. Genome-wide, transcription-profiling analysis of C. elegans infected with C. albicans yeast showed that exposure to C. albicans stimulated a rapid host response involving 313 genes (124 upregulated and 189 downregulated, ∼1.6% of the genome) many of which encode antimicrobial, secreted or detoxification proteins. Interestingly, the host genes affected by C. albicans exposure overlapped only to a small extent with the distinct transcriptional responses to the pathogenic bacteria Pseudomonas aeruginosa or Staphylococcus aureus, indicating that there is a high degree of immune specificity toward different bacterial species and C. albicans. Furthermore, genes induced by P. aeruginosa and S. aureus were strongly over-represented among the genes downregulated during C. albicans infection, suggesting that in response to fungal pathogens, nematodes selectively repress the transcription of antibacterial immune effectors. A similar phenomenon is well known in the plant immune response, but has not been described previously in metazoans. Finally, 56% of the genes induced by live C. albicans were also upregulated by heat-killed yeast. These data suggest that a large part of the transcriptional response to C. albicans is mediated through “pattern recognition,” an ancient immune surveillance mechanism able to detect conserved microbial molecules (so-called pathogen-associated molecular patterns or PAMPs). This study provides new information on the evolution and regulation of the innate immune response to divergent pathogens and demonstrates that nematodes selectively mount specific antifungal defenses at the expense of antibacterial responses
    corecore