1,541 research outputs found

    Effect of aging on the reinforcement efficiency of carbon nanotubes in epoxy matrix

    Full text link
    The reinforcement efficiency of carbon nanotubes (CNTs) in epoxy matrix was investigated in the elastic regime. Cyclic uniaxial tensile tests were performed at constant strain amplitude and increasing maximum strain. Post-curing of the epoxy and its composite at a temperature close to the glass transition temperature allowed us to explore the effect of aging on the reinforcement efficiency of CNT. It is found that the reinforcement efficiency is compatible with a mean field mixture rule of stress reinforcement by random inclusions. It also diminishes when the maximum strain increased and this effect is amplified by aging. The decrease of elastic modulus with increasing cyclic maximum strain is quite similar to the one observed for filled elastomers with increasing strain amplitude, a phenomenon often referred as the Payne effect

    Resolving the Gap and AU-scale Asymmetries in the Pre-transitional Disk of V1247 Orionis

    Get PDF
    archiveprefix: arXiv primaryclass: astro-ph.SR keywords: accretion, accretion disks, protoplanetary disks, stars: pre-main sequence, techniques: interferometric eid: 80 adsurl: http://adsabs.harvard.edu/abs/2013ApJ...768...80K adsnote: Provided by the SAO/NASA Astrophysics Data SystemarticlePre-transitional disks are protoplanetary disks with a gapped disk structure, potentially indicating the presence of young planets in these systems. In order to explore the structure of these objects and their gap-opening mechanism, we observed the pre-transitional disk V1247 Orionis using the Very Large Telescope Interferometer, the Keck Interferometer, Keck-II, Gemini South, and IRTF. This allows us to spatially resolve the AU-scale disk structure from near- to mid-infrared wavelengths (1.5-13 μm), tracing material at different temperatures and over a wide range of stellocentric radii. Our observations reveal a narrow, optically thick inner-disk component (located at 0.18 AU from the star) that is separated from the optically thick outer disk (radii gsim 46 AU), providing unambiguous evidence for the existence of a gap in this pre-transitional disk. Surprisingly, we find that the gap region is filled with significant amounts of optically thin material with a carbon-dominated dust mineralogy. The presence of this optically thin gap material cannot be deduced solely from the spectral energy distribution, yet it is the dominant contributor at mid-infrared wavelengths. Furthermore, using Keck/NIRC2 aperture masking observations in the H, K', and L' bands, we detect asymmetries in the brightness distribution on scales of ~15-40 AU, i.e., within the gap region. The detected asymmetries are highly significant, yet their amplitude and direction changes with wavelength, which is not consistent with a companion interpretation but indicates an inhomogeneous distribution of the gap material. We interpret this as strong evidence for the presence of complex density structures, possibly reflecting the dynamical interaction of the disk material with sub-stellar mass bodies that are responsible for the gap clearing.This work was done in part under contract with the California Institute of Technology (Caltech), funded by NASA through the Sagan Fellowship Program (S.K. and C.E. are Sagan Fellows). Data presented herein were obtained at the W. M. Keck Observatory from telescope time allocated to the National Aeronautics and Space Administration through the agency's scientific partnership with the California Institute of Technology and the University of California. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation. The authors wish to recognize and acknowledge the very significant cultural role and reverence that the summit of Mauna Kea has always had within the indigenous Hawaiian community. We are most fortunate to have the opportunity to conduct observations from this mountain. This work was supported in part by the Aerospace Corporation's Independent Research and Development (IR&D) program. This work was supported by NASA ADP grant NNX09AC73G

    Orbital Elements and Stellar Parameters of the Active Binary UX Arietis

    Get PDF
    This is the final version of the article. Available from American Astronomical Society via the DOI in this record.Stellar activity observed as large surface spots, radio flares, or emission lines is often found in binary systems. UX Arietis exhibits these signs of activity, originating on the K0 subgiant primary component. Our aim is to resolve the binary, measure the orbital motion, and provide accurate stellar parameters such as masses and luminosities to aid in the interpretation of the observed phenomena. Using the CHARA six-telescope optical long-baseline array on Mount Wilson, California, we obtained amplitudes and phases of the interferometric visibility on baselines up to 330 m in length, resolving the two components of the binary. We reanalyzed archival Center for Astrophysics spectra to disentangle the binary component spectra and the spectrum of the third component, which was resolved by speckle interferometry. We also obtained new spectra with the Nordic Optical Telescope, and we present new photometric data that we use to model stellar surface spot locations. Both interferometric visibilities and spectroscopic radial velocities are modeled with a spotted primary stellar surface using the Wilson–Devinney code. We fit the orbital elements to the apparent orbit and radial velocity data to derive the distance (52.1 ± 0.8 pc) and stellar masses (MP = 1.30 0.06 M, MS = 1.14 0.06 M). The radius of the primary can be determined to be RP = 5.6 0.1 R and that of the secondary to be RS = 1.6 0.2 R. The equivalent spot coverage of the primary component was found to be 62% with an effective temperature 20% below that of the unspotted surface.We thank Robert Wilson (University of Florida) for providing a custom version of his code to compute images of spotted stellar surfaces and for his help with using it. This work is based upon observations obtained with the Georgia State University (GSU) Center for High Angular Resolution Astronomy (CHARA) array at Mount Wilson Observatory. The CHARA array is supported by the National Science Foundation under grant numbers AST-1211929 and AST-1411654. Institutional support has been provided by the GSU College of Arts and Sciences and the GSU Office of the Vice President for Research and Economic Development. The MIRC instrument at the CHARA array was funded by the University of Michigan. F.B., R.R., and J.D.M. acknowledge support from NSF-AST 1210972 and 1108963. G.T. acknowledges partial support from NSF grant AST-1509375. S.K. acknowledges support from an STFC Rutherford Fellowship (ST/J004030/1) and ERC Starting Grant (grant agreement no. 639889). This work is also based on observations made with the Nordic Optical Telescope (NOT), operated by the Nordic Optical Telescope Scientific Association at the Observatorio del Roque de los Muchachos, La Palma, Spain, of the Instituto de Astrofisica de Canarias. This research has made use of the SIMBAD database, operated at the CDS, Strasbourg, France. This research has made use of the Jean-Marie Mariotti Center SearchCal service13 codeveloped by FIZEAU and LAOG/IPAG and of the CDS astronomical databases SIMBAD and VIZIER.14 This research has made use of the Washington Double Star Catalog, maintained at the U.S. Naval Observatory. We thank Nicholas Elias II for discussions. We thank Dimitri Pourbaix for maintaining and providing access to the SB9 database of RV measurements of spectroscopic binaries

    The shadow knows: using shadows to investigate the structure of the pretransitional disk of HD 100453

    Get PDF
    This is the final version of the article. Available from American Astronomical Society via the DOI in this record.We present GPI polarized intensity imagery of HD 100453 in Y-, J-, and K1 bands which reveals an inner gap (9189 - 18 au), an outer disk (183918-39 au) with two prominent spiral arms, and two azimuthally-localized dark features also present in SPHERE total intensity images (Wagner 2015). SED fitting further suggests the radial gap extends to 11 au. The narrow, wedge-like shape of the dark features appears similar to predictions of shadows cast by a inner disk which is misaligned with respect to the outer disk. Using the Monte Carlo radiative transfer code HOCHUNCK3D (Whitney 2013), we construct a model of the disk which allows us to determine its physical properties in more detail. From the angular separation of the features we measure the difference in inclination between the disks 45^{\circ}, and their major axes, PA = 140^{\circ} east of north for the outer disk and 100^{\circ}for the inner disk. We find an outer disk inclination of 25±1025 \pm 10^{\circ} from face-on in broad agreement with the Wagner 2015 measurement of 34^{\circ}. SPHERE data in J- and H-bands indicate a reddish disk which points to HD 100453 evolving into a young debris disk.Based in part on data obtained at the Gemini Observatory via the time exchange program between Gemini and the Subaru Telescope (GS-2015A-C-1). The Gemini Observatory is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the NSF on behalf of the Gemini partnership: the National Science Foundation (United States), the National Research Council (Canada), CONICYT (Chile), Ministerio de Ciencia, Tecnología e Innovación Productiva (Argentina), and Ministério da Ciência, Tecnologia e Inovação (Brazil). M.T. is partly supported by JSPS KAKENHI 2680016. C.A.G. is supported under NASA Origins of Solar Systems Funding via NNG16PX39P. Y.H. is supported by Jet Propulsion Laboratory, California Institute of Technology under a contract from NASA. M.S. is supported by NASA Exoplanet Research Program NNX16AJ75G. J.K. acknowledges support from Philip Leverhulme Prize (PLP-2013-110, PI: Stefan Kraus). S.K. acknowledges support from an ERC Starting Grant (Grant Agreement No. 639889). We also thank the referee for their comments and suggestions which added clarity to this paper

    Variability of disk emission in pre-main sequence and related stars. II. Variability in the gas and dust emission of the Herbig Fe star SAO 206462

    Get PDF
    This is the author accepted manuscript. The final version is available from the publisher via the DOI in this record.We present 13 epochs of near-infrared (0.8-5 μm) spectroscopic observations of the pre-transitional, "gapped" disk system in SAO 206462 (=HD 135344B). In all, six gas emission lines (Brα, Brγ, Paβ, Paγ, Paδ, Paepsilon, and the 0.8446 μm line of O I) along with continuum measurements made near the standard J, H, K, and L photometric bands were measured. A mass accretion rate of approximately 2 × 10–8 M ☉ yr–1 was derived from the Brγ and Paβ lines. However, the fluxes of these lines varied by a factor of over two during the course of a few months. The continuum also varied, but by only ~30%, and even decreased at a time when the gas emission was increasing. The H I line at 1.083 μm was also found to vary in a manner inconsistent with that of either the hydrogen lines or the dust. Both the gas and dust variabilities indicate significant changes in the region of the inner gas and the inner dust belt that may be common to many young disk systems. If planets are responsible for defining the inner edge of the gap, they could interact with the material on timescales commensurate with what is observed for the variations in the dust, while other disk instabilities (thermal, magnetorotational) would operate there on longer timescales than we observe for the inner dust belt. For SAO 206462, the orbital period would likely be 1-3 years. If the changes are being induced in the disk material closer to the star than the gap, a variety of mechanisms (disk instabilities, interactions via planets) might be responsible for the changes seen. The He I feature is most likely due to a wind whose orientation changes with respect to the observer on timescales of a day or less. To further constrain the origin of the gas and dust emission will require multiple spectroscopic and interferometric observations on both shorter and longer timescales that have been sampled so far.This work was supported by NASA ADP grants NNH06CC28C and NNX09AC73G, Hubble Space Telescope grants HST-GO-10764 and HST-GO-10864, Chilean National TAC grants CNTAC-010A-064

    Chest pain with ST segment elevation in a patient with prosthetic aortic valve infective endocarditis: a case report

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>Acute ST-segment elevation myocardial infarction secondary to atherosclerotic plaque rupture is a common medical emergency. This condition is effectively managed with percutaneous coronary intervention or thrombolysis. We report a rare case of acute myocardial infarction secondary to coronary embolisation of valvular vegetation in a patient with infective endocarditis, and we highlight how the management of this phenomenon may not be the same.</p> <p>Case presentation</p> <p>A 73-year-old British Caucasian man with previous tissue aortic valve replacement was diagnosed with and treated for infective endocarditis of his native mitral valve. His condition deteriorated in hospital and repeat echocardiography revealed migration of vegetation to his aortic valve. Whilst waiting for surgery, our patient developed severe central crushing chest pain with associated anterior ST segment elevation on his electrocardiogram. Our patient had no history or risk factors for ischaemic heart disease. It was likely that coronary embolisation of part of the vegetation had occurred. Thrombolysis or percutaneous coronary intervention treatments were not performed in this setting and a plan was made for urgent surgical intervention. However, our patient deteriorated rapidly and unfortunately died.</p> <p>Conclusion</p> <p>Clinicians need to be aware that atherosclerotic plaque rupture is not the only cause of acute myocardial infarction. In the case of septic vegetation embolisation, case report evidence reveals that adopting the current strategies used in the treatment of myocardial infarction can be dangerous. Thrombolysis risks intra-cerebral hemorrhage from mycotic aneurysm rupture. Percutaneous coronary intervention risks coronary mycotic aneurysm formation, stent infections as well as distal septic embolisation. As yet, there remains no defined treatment modality and we feel all cases should be referred to specialist cardiac centers to consider how best to proceed.</p

    Different Prey Resources Suggest Little Competition Between Non-Native Frogs and Insectivorous Birds Despite Isotopic Niche Overlap

    Get PDF
    Non-native amphibians often compete with native amphibians in their introduced range, but their competitive effects on other vertebrates are less well known. The Puerto Rican coqui frog (Eleutherodactylus coqui) has colonized the island of Hawaii, and has been hypothesized to compete with insectivorous birds and bats. To address if the coqui could compete with these vertebrates, we used stable isotope analyses to compare the trophic position and isotopic niche overlap between the coqui, three insectivorous bird species, and the Hawaiian hoary bat. Coquis shared similar trophic position to Hawaii amakihi, Japanese white-eye, and red-billed leiothrix. Coquis were about 3 ‰ less enriched in δ15N than the Hawaiian hoary bat, suggesting the bats feed at a higher trophic level than coquis. Analyses of potential diet sources between coquis and each of the three bird species indicate that there was more dietary overlap between bird species than any of the birds and the coqui. Results suggest that Acari, Amphipoda, and Blattodea made up \u3e90% of coqui diet, while Araneae made up only 2% of coqui diet, but approximately 25% of amakihi and white-eye diet. The three bird species shared similar proportions of Lepidoptera larvae, which were ~25% of their diet. Results suggest that coquis share few food resources with insectivorous birds, but occupy a similar trophic position, which could indicate weak competition. However, resource competition may not be the only way coquis impact insectivorous birds, and future research should examine whether coqui invasions are associated with changes in bird abundance

    From DNA sequence to application: possibilities and complications

    Get PDF
    The development of sophisticated genetic tools during the past 15 years have facilitated a tremendous increase of fundamental and application-oriented knowledge of lactic acid bacteria (LAB) and their bacteriophages. This knowledge relates both to the assignments of open reading frames (ORF’s) and the function of non-coding DNA sequences. Comparison of the complete nucleotide sequences of several LAB bacteriophages has revealed that their chromosomes have a fixed, modular structure, each module having a set of genes involved in a specific phase of the bacteriophage life cycle. LAB bacteriophage genes and DNA sequences have been used for the construction of temperature-inducible gene expression systems, gene-integration systems, and bacteriophage defence systems. The function of several LAB open reading frames and transcriptional units have been identified and characterized in detail. Many of these could find practical applications, such as induced lysis of LAB to enhance cheese ripening and re-routing of carbon fluxes for the production of a specific amino acid enantiomer. More knowledge has also become available concerning the function and structure of non-coding DNA positioned at or in the vicinity of promoters. In several cases the mRNA produced from this DNA contains a transcriptional terminator-antiterminator pair, in which the antiterminator can be stabilized either by uncharged tRNA or by interaction with a regulatory protein, thus preventing formation of the terminator so that mRNA elongation can proceed. Evidence has accumulated showing that also in LAB carbon catabolite repression in LAB is mediated by specific DNA elements in the vicinity of promoters governing the transcription of catabolic operons. Although some biological barriers have yet to be solved, the vast body of scientific information presently available allows the construction of tailor-made genetically modified LAB. Today, it appears that societal constraints rather than biological hurdles impede the use of genetically modified LAB.
    corecore