1,115 research outputs found

    Methane storms as a driver of Titan's dune orientation

    Full text link
    Titan's equatorial regions are covered by eastward propagating linear dunes. This direction is opposite to mean surface winds simulated by Global Climate Models (GCMs), which are oriented westward at these latitudes, similar to trade winds on Earth. Different hypotheses have been proposed to address this apparent contradiction, involving Saturn's gravitational tides, large scale topography or wind statistics, but none of them can explain a global eastward dune propagation in the equatorial band. Here we analyse the impact of equinoctial tropical methane storms developing in the superrotating atmosphere (i.e. the eastward winds at high altitude) on Titan's dune orientation. Using mesoscale simulations of convective methane clouds with a GCM wind profile featuring superrotation, we show that Titan's storms should produce fast eastward gust fronts above the surface. Such gusts dominate the aeolian transport, allowing dunes to extend eastward. This analysis therefore suggests a coupling between superrotation, tropical methane storms and dune formation on Titan. Furthermore, together with GCM predictions and analogies to some terrestrial dune fields, this work provides a general framework explaining several major features of Titan's dunes: linear shape, eastward propagation and poleward divergence, and implies an equatorial origin of Titan's dune sand.Comment: Published online on Nature Geoscience on 13 April 201

    Transient peak-strain matching partially recovers the age-impaired mechanoadaptive cortical bone response

    Get PDF
    Mechanoadaptation maintains bone mass and architecture; its failure underlies age-related decline in bone strength. It is unclear whether this is due to failure of osteocytes to sense strain, osteoblasts to form bone or insufficient mechanical stimulus. Mechanoadaptation can be restored to aged bone by surgical neurectomy, suggesting that changes in loading history can rescue mechanoadaptation. We use non-biased, whole-bone tibial analyses, along with characterisation of surface strains and ensuing mechanoadaptive responses in mice at a range of ages, to explore whether sufficient load magnitude can activate mechanoadaptation in aged bone. We find that younger mice adapt when imposed strains are lower than in mature and aged bone. Intriguingly, imposition of short-term, high magnitude loading effectively primes cortical but not trabecular bone of aged mice to respond. This response was regionally-matched to highest strains measured by digital image correlation and to osteocytic mechanoactivation. These data indicate that aged bone’s loading response can be partially recovered, non-invasively by transient, focal high strain regions. Our results indicate that old murine bone does respond to load when the loading is of sufficient magnitude, and bones’ age-related adaptation failure may be due to insufficient mechanical stimulus to trigger mechanoadaptation

    Cell lineage-specific mitochondrial resilience during mammalian organogenesis

    Get PDF
    Mitochondrial activity differs markedly between organs, but it is not known how and when this arises. Here we show that cell lineage-specific expression profiles involving essential mitochondrial genes emerge at an early stage in mouse development, including tissue-specific isoforms present before organ formation. However, the nuclear transcriptional signatures were not independent of organelle function. Genetically disrupting intra-mitochondrial protein synthesis with two different mtDNA mutations induced cell lineage-specific compensatory responses, including molecular pathways not previously implicated in organellar maintenance. We saw downregulation of genes whose expression is known to exacerbate the effects of exogenous mitochondrial toxins, indicating a transcriptional adaptation to mitochondrial dysfunction during embryonic development. The compensatory pathways were both tissue and mutation specific and under the control of transcription factors which promote organelle resilience. These are likely to contribute to the tissue specificity which characterizes human mitochondrial diseases and are potential targets for organ-directed treatments

    Dynamics of multi-stage infections on networks

    Get PDF
    This paper investigates the dynamics of infectious diseases with a nonexponentially distributed infectious period. This is achieved by considering a multistage infection model on networks. Using pairwise approximation with a standard closure, a number of important characteristics of disease dynamics are derived analytically, including the final size of an epidemic and a threshold for epidemic outbreaks, and it is shown how these quantities depend on disease characteristics, as well as the number of disease stages. Stochastic simulations of dynamics on networks are performed and compared to output of pairwise models for several realistic examples of infectious diseases to illustrate the role played by the number of stages in the disease dynamics. These results show that a higher number of disease stages results in faster epidemic outbreaks with a higher peak prevalence and a larger final size of the epidemic. The agreement between the pairwise and simulation models is excellent in the cases we consider

    Temporal Integration of Movement: The Time-Course of Motion Streaks Revealed by Masking

    Get PDF
    Temporal integration in the visual system causes fast-moving objects to leave oriented ‘motion streaks’ in their wake, which could be used to facilitate motion direction perception. Temporal integration is thought to occur over 100 ms in early cortex, although this has never been tested for motion streaks. Here we compare the ability of fast-moving (‘streaky’) and slow-moving fields of dots to mask briefly flashed gratings either parallel or orthogonal to the motion trajectory. Gratings were presented at various asynchronies relative to motion onset (from to ms) to sample the time-course of the accumulating streaks. Predictions were that masking would be strongest for the fast parallel condition, and would be weak at early asynchronies and strengthen over time as integration rendered the translating dots more streaky and grating-like. The asynchrony where the masking function reached a plateau would correspond to the temporal integration period. As expected, fast-moving dots caused greater masking of parallel gratings than orthogonal gratings, and slow motion produced only modest masking of either grating orientation. Masking strength in the fast, parallel condition increased with time and reached a plateau after 77 ms, providing an estimate of the temporal integration period for mechanisms encoding motion streaks. Interestingly, the greater masking by fast motion of parallel compared with orthogonal gratings first reached significance at 48 ms before motion onset, indicating an effect of backward masking by motion streaks

    Natural images from the birthplace of the human eye

    Get PDF
    Here we introduce a database of calibrated natural images publicly available through an easy-to-use web interface. Using a Nikon D70 digital SLR camera, we acquired about 5000 six-megapixel images of Okavango Delta of Botswana, a tropical savanna habitat similar to where the human eye is thought to have evolved. Some sequences of images were captured unsystematically while following a baboon troop, while others were designed to vary a single parameter such as aperture, object distance, time of day or position on the horizon. Images are available in the raw RGB format and in grayscale. Images are also available in units relevant to the physiology of human cone photoreceptors, where pixel values represent the expected number of photoisomerizations per second for cones sensitive to long (L), medium (M) and short (S) wavelengths. This database is distributed under a Creative Commons Attribution-Noncommercial Unported license to facilitate research in computer vision, psychophysics of perception, and visual neuroscience.Comment: Submitted to PLoS ON

    The air quality impacts of road closures associated with the 2004 Democratic National Convention in Boston

    Get PDF
    BACKGROUND: The Democratic National Convention (DNC) in Boston, Massachusetts in 2004 provided an opportunity to evaluate the impacts of a localized and short-term but potentially significant change in traffic patterns on air quality, and to determine the optimal monitoring approach to address events of this nature. It was anticipated that the road closures associated with the DNC would both influence the overall air pollution level and the distribution of concentrations across the city, through shifts in traffic patterns. METHODS: To capture these effects, we placed passive nitrogen dioxide badges at 40 sites around metropolitan Boston before, during, and after the DNC, with the goal of capturing the array of hypothesized impacts. In addition, we continuously measured elemental carbon at three sites, and gathered continuous air pollution data from US EPA fixed-site monitors and traffic count data from the Massachusetts Highway Department. RESULTS: There were significant reductions in traffic volume on the highway with closures north of Boston, with relatively little change along other highways, indicating a more isolated traffic reduction rather than an across-the-board decrease. For our nitrogen dioxide samples, while there was a relatively small change in mean concentrations, there was significant heterogeneity across sites, which corresponded with our a priori classifications of road segments. The median ratio of nitrogen dioxide concentrations during the DNC relative to non-DNC sampling periods was 0.58 at sites with hypothesized traffic reductions, versus 0.88 for sites with no changes hypothesized and 1.15 for sites with hypothesized traffic increases. Continuous monitors measured slightly lower concentrations of elemental carbon and nitrogen dioxide during road closure periods at monitors proximate to closed highway segments, but not for PM(2.5 )or further from major highways. CONCLUSION: We conclude that there was a small but measurable influence of DNC-related road closures on air quality patterns in the Boston area, and that a low-cost monitoring study combining passive badges for spatial heterogeneity and continuous monitors for temporal heterogeneity can provide useful insight for community air quality assessments

    Visual adaptation alters the apparent speed of real-world actions

    Get PDF
    The apparent physical speed of an object in the field of view remains constant despite variations in retinal velocity due to viewing conditions (velocity constancy). For example, people and cars appear to move across the field of view at the same objective speed regardless of distance. In this study a series of experiments investigated the visual processes underpinning judgements of objective speed using an adaptation paradigm and video recordings of natural human locomotion. Viewing a video played in slow-motion for 30seconds caused participants to perceive subsequently viewed clips played at standard speed as too fast, so playback had to be slowed down in order for it to appear natural; conversely after viewing fast-forward videos for 30seconds, playback had to be speeded up in order to appear natural. The perceived speed of locomotion shifted towards the speed depicted in the adapting video (‘re-normalisation’). Results were qualitatively different from those obtained in previously reported studies of retinal velocity adaptation. Adapting videos that were scrambled to remove recognizable human figures or coherent motion caused significant, though smaller shifts in apparent locomotion speed, indicating that both low-level and high-level visual properties of the adapting stimulus contributed to the changes in apparent speed

    Effects of Different Up-Dosing Regimens for Hymenoptera Venom Immunotherapy on Serum CTLA-4 and IL-10

    Get PDF
    BACKGROUND: Cytotoxic T lymphocyte associated antigen-4 (CTLA-4) is involved in the activation pathways of T lymphocytes. It has been shown that the circulating form of CTLA-4 is elevated in patients with hymenoptera allergy and can be down regulated by immunotherapy. OBJECTIVE: to assess the effects on CTLA-4 of venom immunotherapy, given with different induction protocols: conventional (6 weeks), rush (3 days) or ultra rush (1 day). METHODS: Sera from patients with hymenoptera allergy were collected at baseline and at the end of the induction phase. CTLA-4 and IL-10 were assayed in the same samples. A subset of patients were assayed also after 12 months of VIT maintenance. RESULTS: Ninety-four patients were studied. Of them, 50 underwent the conventional induction, 20 the rush and 24 the ultra-rush. Soluble CTLA-4 was detectable in all patients at baseline, and significantly decreased at the end of the induction, irrespective of its duration. Of note, a significant decrease of sCTLA-4 could be seen already at 24 hours. In parallel, IL-10 significantly increased at the end of the induction. At 12 months, sCTLA-4 remained low, whereas IL-10 returned to the baseline values. CONCLUSIONS: Serum CTLA4 is an early marker of the immunological effects of venom immunotherapy, and its changes persist after one year of maintenance treatment
    corecore