142 research outputs found

    Protein crystallization analysis on the World Community Grid

    Get PDF
    We have developed an image-analysis and classification system for automatically scoring images from high-throughput protein crystallization trials. Image analysis for this system is performed by the Help Conquer Cancer (HCC) project on the World Community Grid. HCC calculates 12,375 distinct image features on microbatch-under-oil images from the Hauptman-Woodward Medical Research Institute’s High-Throughput Screening Laboratory. Using HCC-computed image features and a massive training set of 165,351 hand-scored images, we have trained multiple Random Forest classifiers that accurately recognize multiple crystallization outcomes, including crystals, clear drops, precipitate, and others. The system successfully recognizes 80% of crystal-bearing images, 89% of precipitate images, and 98% of clear drops

    Nitroheterocyclic drugs cure experimental <i>Trypanosoma cruzi</i> infections more effectively in the chronic stage than in the acute stage

    Get PDF
    The insect-transmitted protozoan parasite Trypanosoma cruzi is the causative agent of Chagas disease, and infects 5-8 million people in Latin America. Chagas disease is characterised by an acute phase, which is partially resolved by the immune system, but then develops as a chronic life-long infection. There is a consensus that the front-line drugs benznidazole and nifurtimox are more effective against the acute stage in both clinical and experimental settings. However, confirmative studies have been restricted by difficulties in demonstrating sterile parasitological cure. Here, we describe a systematic study of nitroheterocyclic drug efficacy using highly sensitive bioluminescence imaging of murine infections. Unexpectedly, we find both drugs are more effective at curing chronic infections, judged by treatment duration and therapeutic dose. This was not associated with factors that differentially influence plasma drug concentrations in the two disease stages. We also observed that fexinidazole and fexinidazole sulfone are more effective than benznidazole and nifurtimox as curative treatments, particularly for acute stage infections, most likely as a result of the higher and more prolonged exposure of the sulfone derivative. If these findings are translatable to human patients, they will have important implications for treatment strategies

    Development of Trypanosoma cruzi in vitro assays to identify compounds suitable for progression in Chagas’ disease drug discovery

    Get PDF
    Chagas' disease is responsible for significant mortality and morbidity in Latin America. Current treatments display variable efficacy and have adverse side effects, hence more effective, better tolerated drugs are needed. However, recent efforts have proved unsuccessful with failure of the ergosterol biosynthesis inhibitor posaconazole in phase II clinical trials despite promising in vitro and in vivo studies. The lack of translation between laboratory experiments and clinical outcome is a major issue for further drug discovery efforts. Our goal was to identify cell-based assays that could differentiate current nitro-aromatic drugs nifurtimox and benznidazole from posaconazole. Using a panel of T. cruzi strains including the six major lineages (TcI-VI), we found that strain PAH179 (TcV) was markedly less susceptible to posaconazole in vitro. Determination of parasite doubling and cycling times as well as EdU labelling experiments all indicate that this lack of sensitivity is due to the slow doubling and cycling time of strain PAH179. This is in accordance with ergosterol biosynthesis inhibition by posaconazole leading to critically low ergosterol levels only after multiple rounds of division, and is further supported by the lack of effect of posaconazole on the non-replicative trypomastigote form. A washout experiment with prolonged posaconazole treatment showed that, even for more rapidly replicating strains, this compound cannot clear all parasites, indicative of a heterogeneous parasite population in vitro and potentially the presence of quiescent parasites. Benznidazole in contrast was able to kill all parasites. The work presented here shows clear differentiation between the nitro-aromatic drugs and posaconazole in several assays, and suggests that in vitro there may be clinically relevant heterogeneity in the parasite population that can be revealed in long-term washout experiments. Based on these findings we have adjusted our in vitro screening cascade so that only the most promising compounds are progressed to in vivo experiments

    Ears of the Armadillo: Global Health Research and Neglected Diseases in Texas

    Get PDF
    Neglected tropical diseases (NTDs) have\ud been recently identified as significant public\ud health problems in Texas and elsewhere in\ud the American South. A one-day forum on the\ud landscape of research and development and\ud the hidden burden of NTDs in Texas\ud explored the next steps to coordinate advocacy,\ud public health, and research into a\ud cogent health policy framework for the\ud American NTDs. It also highlighted how\ud U.S.-funded global health research can serve\ud to combat these health disparities in the\ud United States, in addition to benefiting\ud communities abroad

    Safety and immunogenicity of a self-amplifying RNA vaccine against COVID-19: COVAC1, a phase I, dose-ranging trial

    Get PDF
    Background: Lipid nanoparticle (LNP) encapsulated self-amplifying RNA (saRNA) is a novel technology formulated as a low dose vaccine against COVID-19. Methods: A phase I first-in-human dose-ranging trial of a saRNA COVID-19 vaccine candidate LNP-nCoVsaRNA, was conducted at Imperial Clinical Research Facility, and participating centres in London, UK, between 19th June to 28th October 2020. Participants received two intramuscular (IM) injections of LNP-nCoVsaRNA at six different dose levels, 0.1-10.0μg, given four weeks apart. An open-label dose escalation was followed by a dose evaluation. Solicited adverse events (AEs) were collected for one week from enrolment, with follow-up at regular intervals (1-8 weeks). The binding and neutralisation capacity of anti-SARS-CoV-2 antibody raised in participant sera was measured by means of an anti-Spike (S) IgG ELISA, immunoblot, SARS-CoV-2 pseudoneutralisation and wild type neutralisation assays. (The trial is registered: ISRCTN17072692, EudraCT 2020-001646-20). Findings: 192 healthy individuals with no history or serological evidence of COVID-19, aged 18-45 years were enrolled. The vaccine was well tolerated with no serious adverse events related to vaccination. Seroconversion at week six whether measured by ELISA or immunoblot was related to dose (both p<0.001), ranging from 8% (3/39; 0.1μg) to 61% (14/23; 10.0μg) in ELISA and 46% (18/39; 0.3μg) to 87% (20/23; 5.0μg and 10.0μg) in a post-hoc immunoblot assay. Geometric mean (GM) anti-S IgG concentrations ranged from 74 (95% CI, 45-119) at 0.1μg to 1023 (468-2236) ng/mL at 5.0μg (p<0.001) and was not higher at 10.0μg. Neutralisation of SARS-CoV-2 by participant sera was measurable in 15% (6/39; 0.1μg) to 48% (11/23; 5.0μg) depending on dose level received. Interpretation: Encapsulated saRNA is safe for clinical development, is immunogenic at low dose levels but failed to induce 100% seroconversion. Modifications to optimise humoral responses are required to realise its potential as an effective vaccine against SARS-CoV-2. Funding: This study was co-funded by grants and gifts from the Medical Research Council UKRI (MC_PC_19076), and the National Institute Health Research/Vaccine Task Force, Partners of Citadel and Citadel Securities, Sir Joseph Hotung Charitable Settlement, Jon Moulton Charity Trust, Pierre Andurand, Restore the Earth

    Behavior and Impact of Zirconium in the Soil–Plant System: Plant Uptake and Phytotoxicity

    Get PDF
    Because of the large number of sites they pollute, toxic metals that contaminate terrestrial ecosystems are increasingly of environmental and sanitary concern (Uzu et al. 2010, 2011; Shahid et al. 2011a, b, 2012a). Among such metals is zirconium (Zr), which has the atomic number 40 and is a transition metal that resembles titanium in physical and chemical properties (Zaccone et al. 2008). Zr is widely used in many chemical industry processes and in nuclear reactors (Sandoval et al. 2011; Kamal et al. 2011), owing to its useful properties like hardness, corrosion-resistance and permeable to neutrons (Mushtaq 2012). Hence, the recent increased use of Zr by industry, and the occurrence of the Chernobyl and Fukashima catastrophe have enhanced environmental levels in soil and waters (Yirchenko and Agapkina 1993; Mosulishvili et al. 1994 ; Kruglov et al. 1996)

    A Field Trial of Alternative Targeted Screening Strategies for Chagas Disease in Arequipa, Peru

    Get PDF
    In the wake of emerging T. cruzi infection in children of periurban Arequipa, Peru, we conducted a prospective field trial to evaluate alternative targeted screening strategies for Chagas disease across the city. Using insect vector data that is routinely collected during Ministry of Health insecticide application campaigns in 3 periurban districts of Arequipa, we separated into 4 categories those households with 1) infected vectors; 2) high vector densities; 3) low vector densities; and 4) no vectors. Residents of all infected-vector households and a random sample of those in the other 3 categories were invited for serological screening for T. cruzi infection. Subsequently, all residents of households within a 15-meter radius of detected seropositive individuals were invited to be screened in a ring case-detection scheme. Of 923 participants, 21 (2.28%) were seropositive. There were no significant differences in prevalence across the 4 screening strategies, indicating that household entomologic factors alone could not predict the risk of infection. Indeed, the most predictive variable of infection was the number of years a person lived in a location with triatomine insects. Therefore, a simple residence history questionnaire may be a useful screening tool in large, diverse urban environments with emerging Chagas disease

    Dinosaur peptides suggest mechanisms of protein survival

    Get PDF
    Eleven collagen peptide sequences recovered from chemical extracts of dinosaur bones were mapped onto molecular models of the vertebrate collagen fibril derived from extant taxa. The dinosaur peptides localized to fibril regions protected by the close packing of collagen molecules, and contained few acidic amino acids. Four peptides mapped to collagen regions crucial for cell-collagen interactions and tissue development. Dinosaur peptides were not represented in more exposed parts of the collagen fibril or regions mediating intermolecular cross-linking. Thus functionally significant regions of collagen fibrils that are physically shielded within the fibril may be preferentially preserved in fossils. These results show empirically that structure-function relationships at the molecular level could contribute to selective preservation in fossilized vertebrate remains across geological time, suggest a ‘preservation motif’, and bolster current concepts linking collagen structure to biological function. This non-random distribution supports the hypothesis that the peptides are produced by the extinct organisms and suggests a chemical mechanism for survival
    corecore