42 research outputs found

    N-linked glycosylation of proteins in the protozoan parasite Toxoplasma gondii

    Get PDF
    Toxoplasma gondii is an obligate intracellular parasite of animal cells. Infection of humans is common and may result in devastating disease, especially in immunocompromised individuals. Despite previous reports that N-glycosylation of proteins may be a rare post-translational modification in this and related organisms, we demonstrate that it is actually quite prevalent in Toxoplasma. N-glycosylation is completely inhibited by treatment of parasites with tunicamycin, but this does not appear to exert its major effect on the parasites until they have egressed from their host cells. Although the tunicamycin-treated parasites appear structurally normal at this time they are not motile and mostly incapable of invading new host cells. The few tunicamycin-treated parasites that do invade are severely affected in their ability to replicate and accumulate with a distended endoplasmic reticulum, deformed nuclei, and without recognizable late secretory organelles. We provide experimental evidence that indicate that Toxoplasma N-glycans differ structurally from those in other eukaryotes

    Metabolic Syndrome Predicts New Onset of Chronic Kidney Disease in 5,829 Patients With Type 2 Diabetes: A 5-year prospective analysis of the Hong Kong Diabetes Registry

    Get PDF
    OBJECTIVE—Type 2 diabetes is the leading cause of end-stage renal disease worldwide. Aside from hyperglycemia and hypertension, other metabolic factors may determine renal outcome. We examined risk associations of metabolic syndrome with new onset of chronic kidney disease (CKD) in 5,829 Chinese patients with type 2 diabetes enrolled between 1995 and 2005

    New Advances on Disease Biomarkers and Molecular Targets in Biomedicine

    No full text
    XII, 275 p. 34 illus., 29 illus. in color.online

    A Clark-type oxygen chip for in situ estimation of the respiratory activity of adhering cells

    No full text
    A Clark-type oxygen chip consisting of a polydimethylsiloxane (PDMS) reservoir containing an amino group-modified PDMS oxygen-permeable membrane (OPM) and a glass substrate containing a three-electrode detector has been constructed by using microfabrication techniques, and it is utilized for in situ measurement of the respiration activity of adhering cells. Use of the alginate sol electrolyte and the electroplating Ag/AgCl pseudo-reference electrode can effectively diminish the crosstalk between the electrochemical electrodes and supply a stable potential for the detection of dissolved oxygen, respectively. The Clark-type oxygen chips possess only 1.00% residual current, response time of 13.4 s and good linearity with a correlation coefficient of 0.9933. The modification of amino groups for the OPM obviously facilitates the adhesion of HeLa cells onto the PDMS OPM surface and allows the cells to spread after 2 h of incubation. The oxygen consumption of the cells in the cell-adhesion process increases with the adhesion time, and the increment of cellular oxygen consumption per minute reaches a maximum after 30 min of incubation. Moreover, the change in the respiration activity of adhering HeLa cells stimulated by the high concentration of glucose or propofol anaesthetic can be monitored in real time with the Clark-type oxygen chip. (c) 2009 Elsevier B.V. All rights reserved
    corecore