4 research outputs found

    An atomic force microscopy and molecular simulations study of the inhibition of barite growth by phosphonates

    Get PDF
    The effect of five phosphonic acids (hydroxyethylene diphosphonic acid, HEDP; nitro trimethyl phosphonic acid, NTMP; methylene diphosphonic acid, MDP; amino methylene phosphonic acid, AMP; and sodium phosphonobutane tricarboxylic acid, PBTC) on the growth of the barite(0 0 1) face has been investigated using atomic force microscopy (AFM). Experimental data have been obtained by in situ measurements of the velocities of barite monomolecular steps growing from solutions with different concentrations of each phosphonic acid. Adsorption isotherms, constructed by plotting individual monomolecular step rates versus inhibitor concentrations, indicate a Langmuir adsorption mechanism in the range of concentrations from 0.5 to 10 lmol/l. Both affinity constants calculated from adsorption isotherms and measurements of growth rates of barite monomolecular steps as a function of inhibitor concentration allowed us to give the following ranking of inhibitor effectiveness: PBTC>NTMP>MDP>HEDPAMP. Molecular simulations of the interaction of the phosphonic acids with barite(0 0 1) surfaces indicate that only kink sites along monomolecular steps can be considered as possible inhibition sites. This is in agreement with the AFM observations and measurements

    Experimental study of the replacement of calcite by calcium sulphates

    No full text
    Among the most relevant mineral replacement reactions are those involving sulphates and carbonates, which have important geological and technological implications. Here it is shown experimentally that during the interaction of calcite (CaCO3) cleavage surfaces with sulphate-bearing acidic solutions, calcite is ultimately replaced by gypsum (CaSO4 2H2O) and anhydrite (CaSO4), depending on the reaction temperature. Observations suggest that this occurs most likely via an interface-coupled dissolution-precipitation reaction, in which the substrate is replaced pseudomorphically by the product. At 120 and 200°C gypsum and/or bassanite (CaSO4·0.5H2O) form as precursor phases for the thermodynamically stable anhydrite. Salinity promotes the formation of less hydrated precursor phases during the replacement of calcite by anhydrite. The reaction stops before equilibrium with respect to calcite is reached and during the course of the reaction most of the bulk solutions are undersaturated with respect to the precipitating phase(s). A mechanism consisting of the dissolution of small amounts of solid in a thin layer of fluid at the mineral-fluid interface and the subsequent precipitation of the product phase from this layer is in agreement with these observations. PHREEQC simulations performed in the framework of this mechanism highlight the relevance of transport and surface reaction kinetics on the volume change associated with the CaCO3-CaSO4 replacement. Under our experimental conditions, this reaction occurs with a positive volume change, which ultimately results in passivation of the unreacted substrate before calcite attains equilibrium with respect to the bulk solution

    Coupled dissolution and precipitation at mineral-fluid interfaces

    No full text
    Reactions occurring at mineral–fluid interfaces are important in all geochemical processes and essential for the cycling of elements within the Earth. Understanding the mechanism of the transformation of one solid phase to another and the role of fluids is fundamental to many natural and industrial processes. Problems such as the interaction of minerals with CO2-saturated water, the durability of nuclear waste materials, the remediation of polluted water, and mineral reactions that can destroy our stone-based cultural heritage, are related by the common feature that a mineral assemblage in contact with a fluid may be replaced by a more stable assemblag

    Hydration effects on gypsum dissolution revealed by in situ nanoscale atomic force microscopy observations

    No full text
    © 2016 Elsevier Ltd. Recent work has suggested that the rates of mineral dissolution in aqueous solutions are dependent on the kinetics of dehydration of the ions building the crystal. Dehydration kinetics will be ultimately determined by the competition between ion-water and water-water interactions, which can be significantly modified by the presence of background ions in solution. At low ionic strength, the effect of electrolytes on ion-water (electrostatic) interactions will dominate (Kowacz et al., 2007). By performing macroscopic and in situ, microscopic (atomic force microscopy) dissolution experiments, the effect of background electrolytes on the dissolution kinetics of gypsum (CaSO4·2H2O) cleavage surfaces is tested at constant, low ionic strength (IS = 0.05) and undersaturation (saturation index, SI = -0.045). Dissolution rates are systematically lower in the presence of 1:1 background electrolytes than in an electrolyte-free solution, regardless of the nature of the electrolyte tested. We hypothesize that stabilization of the hydration shell of calcium by the presence of background ions can explain this result, based on the observed correlations in dissolution rates with the ionic surface tension increment of the background ion in solution. Stabilization of the cation hydration shell should favor dissolution. However, in the case of strongly hydrated ions such as Ca2+, this has a direct entropic effect that reduces the overall dG of the system, so that dissolution is energetically less favorable. Overall, these results provide new evidence that supports cation dehydration being the rate-controlling step for gypsum dissolution, as proposed for other minerals such as barite, dolomite and calcite
    corecore