933 research outputs found

    Nonadiabatic quantum pumping in mesoscopic nanostructures

    Full text link
    We consider a nonadiabatic quantum pumping phenomena in a ballistic narrow constriction. The pumping is induced by a potential that has both spatial and temporal periodicity characterized by KK and Ω\Omega. In the zero frequency (Ω=0\Omega=0) limit, the transmission through narrow constriction exhibits valley structures due to the opening up of energy gaps in the pumping region -- a consequence of the KK periodicity. These valley structures remain robust in the regime of finite Ω\Omega, while their energies of occurrence are shifted by about ℏΩ/2\hbar\Omega/2. The direction of these energy shifts depend on the directions of both the phase-velocity of the pumping potential and the transmitting electrons. This frequency dependent feature of the valley structures gives rise to both the asymmetry in the transmission coefficients and the pumping current. An experimental setup is suggested for a possible observation of our nonadiabatic quantum pumping findings.Comment: 4 pages, 2 figure

    Understanding high-Tc cuprates based on the phase string theory of doped antiferromagnet

    Full text link
    We present a self-consistent RVB theory which unifies the metallic (superconducting) phase with the half-filling antiferromagnetic (AF) phase. Two crucial factors in this theory include the RVB condensation which controls short-range AF spin correlations and the phase string effect introduced by hole hopping as a key doping effect. We discuss both the uniform and non-uniform mean-field solutions and show the unique features of the characteristic spin energy scale, superconducting transition temperature, and the phase diagram, which are all consistent with the experimental measurements of high-TcT_c cuprates.Comment: 4 pages, 4 embeded eps figures, minor typos are corrected, to appear in the proceedings of M2S-HTSC-VI conferenc

    Luttinger Liquid Instability in the One Dimensional t-J Model

    Full text link
    We study the t-J model in one dimension by numerically projecting the true ground state from a Luttinger liquid trial wave function. We find the model exhibits Luttinger liquid behavior for most of the phase diagram in which interaction strength and density are varied. However at small densities and high interaction strengths a new phase with a gap to spin excitations and enhanced superconducting correlations is found. We show this phase is a Luther-Emery liquid and study its correlation functions.Comment: REVTEX, 11 pages. 4 Figures available on request from [email protected]

    A Multiple Commutator Formula for the Sum of Feynman Diagrams

    Get PDF
    In the presence of a large parameter, such as mass or energy, leading behavior of individual Feynman diagrams often get cancelled in the sum. This is known to happen in large-NcN_c QCD in the presence of a baryon, and also in the case of high-energy electron-electron as well as quark-quark scatterings. We present an exact combinatorial formula, involving multiple commutators of the vertices, which can be used to compute such cancellations. It is a non-abelian generalization of the eikonal formula, and will be applied in subsequent publications to study the consistency of large-NcN_c QCD involving baryons, as well as high-energy quark-quark scattering in ordinary QCD.Comment: uu-encoded latex file with two postscript figure

    Numerical renormalization group study of the 1D t-J model

    Full text link
    The one-dimensional (1D) t−Jt-J model is investigated using the density matrix renormalization group (DMRG) method. We report for the first time a generalization of the DMRG method to the case of arbitrary band filling and prove a theorem with respect to the reduced density matrix that accelerates the numerical computation. Lastly, using the extended DMRG method, we present the ground state electron momentum distribution, spin and charge correlation functions. The 3kF3k_F anomaly of the momentum distribution function first discussed by Ogata and Shiba is shown to disappear as JJ increases. We also argue that there exists a density-independent JcJ_c beyond which the system becomes an electron solid.Comment: Wrong set of figures were put in the orginal submissio

    Oscillation of the tunnel splitting in nanospin systems within the particle mapping formalism

    Full text link
    The oscillation of tunnel splitting in the biaxial spin system within magnetic field along the anisotropy axis is analyzed within the particle mapping approach, rather than in the (\theta-\phi) spin coherent-state representation. In our mapping procedure, the spin system is transformed into a particle moving in the restricted S1S^1 geometry whose wave function subjects to the boundary condition involving additional phase shift. We obtain the new topological phase that plays the same role as the Wess-Zumino action in spin coherent-state representation. Considering the interference of two possible trajectories, instanton and anti-instanton, we get the identical condition for the field at which tunneling is quenched, with the previous result within spin coherent-state representation.Comment: 11 pages, 1 figure; Some typographical errors have been correcte

    Initial-State Interactions in the Unpolarized Drell-Yan Process

    Get PDF
    We show that initial-state interactions contribute to the cos⁥2ϕ\cos 2 \phi distribution in unpolarized Drell-Yan lepton pair production ppp p and ppˉ→ℓ+ℓ−X p \bar p \to \ell^+ \ell^- X, without suppression. The asymmetry is expressed as a product of chiral-odd distributions h1⊄(x1,p⊄2)×hˉ1⊄(x2,k⊄2)h_1^\perp(x_1,\bm{p}_\perp^2)\times \bar h_1^\perp(x_2,\bm{k}_\perp^2) , where the quark-transversity function h1⊄(x,p⊄2)h_1^\perp(x,\bm{p}_\perp^2) is the transverse momentum dependent, light-cone momentum distribution of transversely polarized quarks in an {\it unpolarized} proton. We compute this (naive) TT-odd and chiral-odd distribution function and the resulting cos⁥2ϕ\cos 2 \phi asymmetry explicitly in a quark-scalar diquark model for the proton with initial-state gluon interaction. In this model the function h1⊄(x,p⊄2)h_1^\perp(x,\bm{p}_\perp^2) equals the TT-odd (chiral-even) Sivers effect function f1T⊄(x,p⊄2)f^\perp_{1T}(x,\bm{p}_\perp^2). This suggests that the single-spin asymmetries in the SIDIS and the Drell-Yan process are closely related to the cos⁥2ϕ\cos 2 \phi asymmetry of the unpolarized Drell-Yan process, since all can arise from the same underlying mechanism. This provides new insight regarding the role of quark and gluon orbital angular momentum as well as that of initial- and final-state gluon exchange interactions in hard QCD processes.Comment: 22 pages, 6 figure

    R-parity violation effect on the top-quark pair production at linear colliders

    Full text link
    We investigate in detail the effects of the R-parity lepton number violation in the minimal supersymmetric standard model (MSSM) on the top-quark pair production via both e−−e+e^--e^+ and γ−γ\gamma-\gamma collision modes at the linear colliders. We find that with the present experimental constrained /R\rlap/{R} parameters, the effect from /R\rlap/{R} interactions on the processes e+e−→ttˉe^+e^-\to t\bar{t} and e+e−→γγ→ttˉe^+e^- \to \gamma\gamma \to t\bar{t} could be significant and may reach -30% and several percent, respectively. Our results show that the /R\rlap/{R} effects are sensitive to the c.m.s. energy and the relevant /R\rlap/{R} parameters. However, they are not sensitive to squark and slepton masses when mq~≄400GeVm_{\tilde{q}} \geq 400 GeV (or ml~≄300GeVm_{\tilde{l}} \geq 300 GeV) and are almost independent on the tan⁥ÎČ\tan\betaComment: Accepted by Phys.Rev.

    Size-resolved and bulk activation properties of aerosols in the North China Plain

    Get PDF
    Size-resolved and bulk activation properties of aerosols were measured at a regional/suburban site in the North China Plain (NCP), which is occasionally heavily polluted by anthropogenic aerosol particles and gases. A Cloud Condensation Nuclei (CCN) closure study is conducted with bulk CCN number concentration (NCCN) and calculated CCN number concentration based on the aerosol number size distribution and size-resolved activation properties. The observed CCN number concentration (NCCN-obs) are higher than those observed in other locations than China, with average NCCN-obs of roughly 2000, 3000, 6000, 10 000 and 13 000 cm−3 at supersaturations of 0.056, 0.083, 0.17, 0.35 and 0.70%, respectively. An inferred critical dry diameter (Dm) is calculated based on the NCCN-obs and aerosol number size distribution assuming homogeneous chemical composition. The inferred cut-off diameters are in the ranges of 190–280, 160–260, 95–180, 65–120 and 50–100 nm at supersaturations of 0.056, 0.083, 0.17, 0.35 and 0.7%, with their mean values 230.1, 198.4, 128.4, 86.4 and 69.2 nm, respectively. Size-resolved activation measurements show that most of the 300 nm particles are activated at the investigated supersaturations, while almost no particles of 30 nm are activated even at the highest supersaturation of 0.72%. The activation ratio increases with increasing supersaturation and particle size. The slopes of the activation curves for ambient aerosols are not as steep as those observed in calibrations with ammonium sulfate suggesting that the observed aerosols is an external mixture of more hygroscopic and hydrophobic particles. The calculated CCN number concentrations (NCCN-calc) based on the size-resolved activation ratio and aerosol number size distribution correlate well with the NCCN-obs, and show an average overestimation of 19%. Sensitivity studies of the CCN closure show that the NCCN at each supersaturation is well predicted with the campaign average of size-resolved activation curves. These results indicate that the aerosol number size distribution is critical in the prediction of possible CCN. The CCN number concentration can be reliably estimated using time-averaged, size-resolved activation efficiencies without accounting for the temporal variations

    b→sγb \to s \gamma Decay and Right-handed Top-bottom Charged Current

    Full text link
    We introduce an anomalous top quark coupling (right-handed current) into Standard Model Lagrangian. Based on this, a more complete calculation of b→sγb \to s\gamma decay including leading log QCD corrections from mtopm_{top} to MWM_W in addition to corrections from MWM_{W} to mbm_b is given. The inclusive decay rate is found to be suppressed comparing with the case without QCD running from mtm_t to MWM_W except at the time of small values of ∣fRtb∣|f_R^{tb}|. e.g. when fRtb=−0.08f_R^{tb}=-0.08, it is only 1/101/10 of the value given before. As ∣fRtb∣|f_R^{tb}| goes smaller, this contribution is an enhancement like standard model case. From the newly experiment of CLEO Collaboration, strict restrictions to parameters of this top-bottom quark coupling are found.Comment: 20 Pages, 2 figures( ps file uuencoded)
    • 

    corecore