22 research outputs found
Molecular beam epitaxy of free-standing wurtzite AlxGa1xN layers
Recent developments with group III nitrides present AlxGa1xN based LEDs as realistic devices for new alternative deep ultra-violet light sources. Because there is a significant difference in the lattice parameters of GaN and AlN, AlxGa1xN substrates would be preferable to either GaN or AlN for ultraviolet device applications. We have studied the growth of free-standing wurtzite AlxGa1xN bulk crystals by plasma-assisted molecular beam epitaxy (PA-MBE). Thick wurtzite AlxGa1xN films were grown by PA-MBE on 2-in. GaAs (111)B substrates and were removed from the GaAs substrate after growth to provide free standing AlxGa1xN samples. X-ray microanalysis measurements confirm that the AlN fraction is uniform across the wafer and mass spectroscopy measurements show that the composition is also uniform in depth. We have demonstrated that free-standing wurtzite AlxGa1xN wafers can be achieved by PA-MBE for a wide range of AlN fractions. In order to develop a commercially viable process for the growth of wurtzite AlxGa1xN substrates, we have used a novel Riber plasma source and have demonstrated growth rates of GaN up to 1.8 mm/h on 2-in. diameter GaAs and sapphire wafer
Molecular beam epitaxy of free-standing bulk wurtzite AlxGa1-xN layers using a highly efficient RF plasma source
Recent developments with group III nitrides suggest AlxGa1-xN based LEDs can be new alternative commer-cially viable deep ultra-violet light sources. Due to a sig-nificant difference in the lattice parameters of GaN and AlN, AlxGa1-xN substrates would be preferable to either GaN or AlN for ultraviolet device applications. We have studied the growth of free-standing wurtzite AlxGa1-xN bulk crystals by plasma-assisted molecular beam epitaxy (PA-MBE) using a novel RF plasma source. Thick wurtz-ite AlxGa1-xN films were grown by PA-MBE on 2-inch GaAs (111)B substrates and were removed from the GaAs substrate after growth to provide free standing AlxGa1-xN samples. Growth rates of AlxGa1-xN up to 3 μm/h have been demonstrated. Our novel high efficiency RF plasma source allowed us to achieve free-standing bulk AlxGa1-xN layers in a single day’s growth, which makes our MBE bulk growth technique commercially vi-able
Molecular beam epitaxy of free-standing bulk wurtzite AlxGa1-xN layers using a highly efficient RF plasma source
Recent developments with group III nitrides suggest AlxGa1-xN based LEDs can be new alternative commer-cially viable deep ultra-violet light sources. Due to a sig-nificant difference in the lattice parameters of GaN and AlN, AlxGa1-xN substrates would be preferable to either GaN or AlN for ultraviolet device applications. We have studied the growth of free-standing wurtzite AlxGa1-xN bulk crystals by plasma-assisted molecular beam epitaxy (PA-MBE) using a novel RF plasma source. Thick wurtz-ite AlxGa1-xN films were grown by PA-MBE on 2-inch GaAs (111)B substrates and were removed from the GaAs substrate after growth to provide free standing AlxGa1-xN samples. Growth rates of AlxGa1-xN up to 3 μm/h have been demonstrated. Our novel high efficiency RF plasma source allowed us to achieve free-standing bulk AlxGa1-xN layers in a single day’s growth, which makes our MBE bulk growth technique commercially vi-able
High quality GaMnAs films grown with As dimers
We demonstrate that GaMnAs films grown with As2 have excellent structural,
electrical and magnetic properties, comparable or better than similar films
grown with As4. Using As2, a Curie temperature of 112K has been achieved, which
is slightly higher than the best reported to date. More significantly, films
showing metallic conduction have been obtained over a much wider range of Mn
concentrations (from 1.5% to 8%) than has been reported for films grown with
As4. The improved properties of the films grown with As2 are related to the
lower concentration of antisite defects at the low growth temperatures
employed.Comment: 8 pages, accepted for publication in J. Crystal Growt
Growth of free-standing bulk wurtzite AlxGa1−xN layers by molecular beam epitaxy using a highly efficient RF plasma source
The recent development of group III nitrides allows researchers world-wide to consider AlGaN based light emitting diodes as a possible new alternative deep ultra–violet light source for surface decontamination and water purification. In this paper we will describe our recent results on plasma-assisted molecular beam epitaxy (PA-MBE) growth of free-standing wurtzite AlxGa1−xN bulk crystals using the latest model of Riber's highly efficient nitrogen RF plasma source. We have achieved AlGaN growth rates up to 3 µm/h. Wurtzite AlxGa1−xN layers with thicknesses up to 100 μm were successfully grown by PA-MBE on 2-inch and 3-inch GaAs (111)B substrates. After growth the GaAs was subsequently removed using a chemical etch to achieve free-standing AlxGa1−xN wafers. Free-standing bulk AlxGa1−xN wafers with thicknesses in the range 30–100 μm may be used as substrates for further growth of AlxGa1−xN-based structures and devices. High Resolution Scanning Transmission Electron Microscopy (HR-STEM) and Convergent Beam Electron Diffraction (CBED) were employed for detailed structural analysis of AlGaN/GaAs (111)B interface and allowed us to determine the N-polarity of AlGaN layers grown on GaAs (111)B substrates. The novel, high efficiency RF plasma source allowed us to achieve free-standing AlxGa1−xN layers in a single day's growth, making this a commercially viable process
Cubic and hexagonal InGaAsN dilute arsenides by unintentional homogeneous incorporation of As into InGaN
Arsenic alloying is observed for epitaxial layers nominally intended to be In0.75Ga0.25N. Voids form beneath their interfaces with GaAs substrates, acting as sources of Ga + As out-diffusion into the growing epilayers. As a result, heteroepitaxial single-phase quaternary InxGa1-xAsyN1-y, films are formed with x similar to 0.55 and 0.05 menor que y menor que 0,10. While an undoped epilayer retains the wurtzite structure, a Mn-doped sample showed randomly spaced dopant segregations, which, together with a slightly higher As concentration, led to a transformation from the hexagonal to the twinned cubic phase
Nanoscale characterisation of MBE-grown GaMnN / (001) GaAs
The growth of cubic (Ga,Mn)N/(001)GaAs heterostructures by plasma assisted molecular beam epitaxy has been appraised as a function of Ga:N ratio, Mn concentration and growth temperature. The combined analytical techniques of EFTEM, EDX, CBED and dark field imaging have been used to appraise the Mn distributions within (Ga,Mn)N epilayers. Improved incorporation efficiency of Mn is associated with growth under N-rich conditions, but Mn incorporation may be enhanced under Ga-rich conditions at reduced growth temperatures. The surfactant behaviour of Mn during the growth of this spintronic system determines the resultant alloy composition
Wurtzite AlxGa1-xN bulk crystals grown by molecular beam epitaxy
We have studied the growth of wurtzite GaN and AlxGa1-xN layers and bulk crystals by molecular beam epitaxy (MBE). MBE is normally regarded as an epitaxial technique for the growth of very thin layers with monolayer control of their thickness. However, we have used the MBE technique for bulk crystal growth and have produced 2Â in diameter wurtzite AlxGa1-xN layers up to 10Â [mu]m in thickness. Undoped wurtzite AlxGa1-xN films were grown on GaAs (1Â 1Â 1)B substrates by a plasma-assisted molecular beam epitaxy (PA-MBE) method and were removed from the GaAs substrate after the growth. The fact that free-standing ternary AlxGa1-xN wafers can be grown is very significant for the potential future production of wurtzite AlxGa1-xN substrates optimized for AlGaN-based device structures