46 research outputs found

    De Sitter Holography with a Finite Number of States

    Full text link
    We investigate the possibility that, in a combined theory of quantum mechanics and gravity, de Sitter space is described by finitely many states. The notion of observer complementarity, which states that each observer has complete but complementary information, implies that, for a single observer, the complete Hilbert space describes one side of the horizon. Observer complementarity is implemented by identifying antipodal states with outgoing states. The de Sitter group acts on S-matrix elements. Despite the fact that the de Sitter group has no nontrivial finite-dimensional unitary representations, we show that it is possible to construct an S-matrix that is finite-dimensional, unitary, and de Sitter-invariant. We present a class of examples that realize this idea holographically in terms of spinor fields on the boundary sphere. The finite dimensionality is due to Fermi statistics and an `exclusion principle' that truncates the orthonormal basis in which the spinor fields can be expanded.Comment: 23 pages, 1 eps figure, LaTe

    Parikh-Wilczek Tunneling from Noncommutative Higher Dimensional Black Holes

    Full text link
    We study tunneling of massless and massive particles through the smeared quantum horizon of the extra-dimensional Schwarzschild black holes. The emission rate of the particles' tunneling is modified by noncommutativity effects in a bulk spacetime of dimension dd. The issues of information loss and possible correlations between emitted particles are discussed. We show that even by considering both noncommutativity and braneworld effects, there is no correlation between different modes of evaporation at least at late-time and within approximations used in the calculations. However, incorporation of quantum gravity effects such as modification of the standard dispersion relation or generalization of the Heisenberg uncertainty principle, leads to the correlation between emitted particles. Although time-evolution of these correlations is not trivial, a part of information coming out of the black hole can be preserved in these correlations. On the other hand, as a well-known result of spacetime noncommutativity, a part of information may be preserved in a stable black hole remnant.Comment: 23 pages, 1 figure, Accepted for publication in JHE

    Black Hole Thermodynamics and Statistical Mechanics

    Full text link
    We have known for more than thirty years that black holes behave as thermodynamic systems, radiating as black bodies with characteristic temperatures and entropies. This behavior is not only interesting in its own right; it could also, through a statistical mechanical description, cast light on some of the deep problems of quantizing gravity. In these lectures, I review what we currently know about black hole thermodynamics and statistical mechanics, suggest a rather speculative "universal" characterization of the underlying states, and describe some key open questions.Comment: 35 pages, Springer macros; for the Proceedings of the 4th Aegean Summer School on Black Hole

    DLG4-related synaptopathy: a new rare brain disorder

    Get PDF
    PURPOSE: Postsynaptic density protein-95 (PSD-95), encoded by DLG4, regulates excitatory synaptic function in the brain. Here we present the clinical and genetic features of 53 patients (42 previously unpublished) with DLG4 variants.METHODS: The clinical and genetic information were collected through GeneMatcher collaboration. All the individuals were investigated by local clinicians and the gene variants were identified by clinical exome/genome sequencing.RESULTS: The clinical picture was predominated by early onset global developmental delay, intellectual disability, autism spectrum disorder, and attention deficit-hyperactivity disorder, all of which point to a brain disorder. Marfanoid habitus, which was previously suggested to be a characteristic feature of DLG4-related phenotypes, was found in only nine individuals and despite some overlapping features, a distinct facial dysmorphism could not be established. Of the 45 different DLG4 variants, 39 were predicted to lead to loss of protein function and the majority occurred de novo (four with unknown origin). The six missense variants identified were suggested to lead to structural or functional changes by protein modeling studies.CONCLUSION: The present study shows that clinical manifestations associated with DLG4 overlap with those found in other neurodevelopmental disorders of synaptic dysfunction; thus, we designate this group of disorders as DLG4-related synaptopathy.Genetics of disease, diagnosis and treatmen

    Acute kidney injury: Better biomarkers and beyond

    No full text
    corecore