2,982 research outputs found
Dublin City University at CLEF 2006: Experiments for the ImageCLEF Photo Collection Standard Ad Hoc Task
We provide a technical description of our submission to the CLEF 2006 Cross Language Image Retrieval(ImageCLEF) Photo Collection Standard Ad Hoc task. We performed monolingual and cross language retrieval of photo images using photo annotations with and without feedback, and also a combined visual and text retrieval approach. Topics are translated into English using the Babelfish online machine translation
system. Our text runs used the BM25 algorithm, while our visual approach used simple low-level features with matching based on the Jeffrey Divergence measure. Our results consistently indicate that the fusion of text and visual features is best for this task, and that performing feedback for text consistently improves on the baseline
non-feedback BM25 text runs for all language pairs
Supersymmetry of the Schrodinger and PP Wave Solutions in Einstein-Weyl Supergravities
We obtain the Schrodinger and general pp-wave solutions with or without the
massive vector in Einstein-Weyl supergravity. The vector is an auxiliary field
in the off-shell supermultiplet and it acquires a kinetic term in the
Weyl-squared super invariant. We study the supersymmetry of these solutions and
find that turning on the massive vector has a consequence of breaking all the
supersymmetry. The Schrodinger and also the pp-wave solutions with the massive
vector turned off on the other hand preserve 1/4 of the supersymmetry.Comment: 13 pages, no figur
Controlling anomalous stresses in soft field-responsive systems
We report a new phenomenon occurring in field-responsive suspensions:
shear-induced anomalous stresses. Competition between a rotating field and a
shear flow originates a multiplicity of anomalous stress behaviors in
suspensions of bounded dimers constituted by induced dipoles. The great variety
of stress regimes includes non-monotonous behaviors, multi-resonances, negative
viscosity effect and blockades. The reversibility of the transitions between
the different regimes and the self-similarity of the stresses make this
phenomenon controllable and therefore applicable to modify macroscopic
properties of soft condensed matter phasesComment: 5 pages, 6 figures, submitted to PR
Multi-resolution texture classification based on local image orientation
The aim of this paper is to evaluate quantitatively the discriminative power of the image orientation in the texture classification process. In this regard, we have evaluated the performance of two texture classification schemes where the image orientation is extracted using the partial derivatives of the Gaussian function. Since the texture descriptors are dependent on the observation scale, in this study the main emphasis is placed on the implementation of multi-resolution texture analysis schemes. The experimental results were obtained when the analysed texture descriptors were applied to standard texture databases
Electronic Structure of Transition-Metal Dicyanamides Me[N(CN)] (Me = Mn, Fe, Co, Ni, Cu)
The electronic structure of Me[N(CN)] (Me=Mn, Fe, Co, Ni, Cu)
molecular magnets has been investigated using x-ray emission spectroscopy (XES)
and x-ray photoelectron spectroscopy (XPS) as well as theoretical
density-functional-based methods. Both theory and experiments show that the top
of the valence band is dominated by Me 3d bands, while a strong hybridization
between C 2p and N 2p states determines the valence band electronic structure
away from the top. The 2p contributions from non-equivalent nitrogen sites have
been identified using resonant inelastic x-ray scattering spectroscopy with the
excitation energy tuned near the N 1s threshold. The binding energy of the Me
3d bands and the hybridization between N 2p and Me 3d states both increase in
going across the row from Me = Mn to Me = Cu. Localization of the Cu 3d states
also leads to weak screening of Cu 2p and 3s states, which accounts for shifts
in the core 2p and 3s spectra of the transition metal atoms. Calculations
indicate that the ground-state magnetic ordering, which varies across the
series is largely dependent on the occupation of the metal 3d shell and that
structural differences in the superexchange pathways for different compounds
play a secondary role.Comment: 20 pages, 11 figures, 2 table
Homeostasis Meets Motivation in the Battle to Control Food Intake.
Signals of energy homeostasis interact closely with neural circuits of motivation to control food intake. An emerging hypothesis is that the transition to maladaptive feeding behavior seen in eating disorders or obesity may arise from dysregulation of these interactions. Focusing on key brain regions involved in the control of food intake (ventral tegmental area, striatum, hypothalamus, and thalamus), we describe how activity of specific cell types embedded within these regions can influence distinct components of motivated feeding behavior. We review how signals of energy homeostasis interact with these regions to influence motivated behavioral output and present evidence that experience-dependent neural adaptations in key feeding circuits may represent cellular correlates of impaired food intake control. Future research into mechanisms that restore the balance of control between signals of homeostasis and motivated feeding behavior may inspire new treatment options for eating disorders and obesity
A liquid helium target system for a measurement of parity violation in neutron spin rotation
A liquid helium target system was designed and built to perform a precision
measurement of the parity-violating neutron spin rotation in helium due to the
nucleon-nucleon weak interaction. The measurement employed a beam of low energy
neutrons that passed through a crossed neutron polarizer--analyzer pair with
the liquid helium target system located between them. Changes between the
target states generated differences in the beam transmission through the
polarizer--analyzer pair. The amount of parity-violating spin rotation was
determined from the measured beam transmission asymmetries. The expected
parity-violating spin rotation of order rad placed severe constraints
on the target design. In particular, isolation of the parity-odd component of
the spin rotation from a much larger background rotation caused by magnetic
fields required that a nonmagnetic cryostat and target system be supported
inside the magnetic shielding, while allowing nonmagnetic motion of liquid
helium between separated target chambers. This paper provides a detailed
description of the design, function, and performance of the liquid helium
target system.Comment: V2: 29 pages, 14 figues, submitted to Nucl. Instrum. Meth. B. Revised
to address reviewer comment
Effect of Antimony and Cerium on the Formation of Chunky Graphite during Solidification of Heavy-Section Castings of Near-Eutectic Spheroidal Graphite Irons
Thermal analysis is applied to the study of the formation of chunky graphite (CHG) in heavysection castings of spheroidal graphite cast irons. To that aim, near-eutectic melts prepared in one single cast house were poured into molds containing up to four large cubic blocks 30 cm in size. Four melts have been prepared and cast that had a cerium content varying in relation with the spheroidizing alloy used. Postinoculation or addition of antimony was achieved by fixing appropriate amounts of materials in the gating system of each block. Cooling curves recorded in the center of the blocks show that solidification proceeds in three steps: a short primary deposition of graphite followed by an initial and then a bulk eutectic reaction. Formation of CHG could be unambiguously associated with increased recalescence during the bulk eutectic reaction. While antimony strongly decreases the amount of CHG, it appears that the ratio of the contents in antimony and cerium should be higher than 0.8 in order to avoid this graphite degeneracy
Early stage morphology of quench condensed Ag, Pb and Pb/Ag hybrid films
Scanning Tunneling Microscopy (STM) has been used to study the morphology of
Ag, Pb and Pb/Ag bilayer films fabricated by quench condensation of the
elements onto cold (T=77K), inert and atomically flat Highly Oriented Pyrolytic
Graphite (HOPG) substrates. All films are thinner than 10 nm and show a
granular structure that is consistent with earlier studies of QC films. The
average lateral diameter, , of the Ag grains, however, depends on
whether the Ag is deposited directly on HOPG ( = 13 nm) or on a Pb
film consisting of a single layer of Pb grains ( = 26.8 nm). In
addition, the critical thickness for electrical conduction () of Pb/Ag
films on inert glass substrates is substantially larger than for pure Ag films.
These results are evidence that the structure of the underlying substrate
exerts an influence on the size of the grains in QC films. We propose a
qualitative explanation for this previously unencountered phenomenon.Comment: 11 pages, 3 figures and one tabl
- …
