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Abstract. The aim of this paper is to evaluate quantitatively the dis-
criminative power of the image orientation in the texture classification
process. In this regard, we have evaluated the performance of two texture
classification schemes where the image orientation is extracted using the
partial derivatives of the Gaussian function. Since the texture descriptors
are dependent on the observation scale, in this study the main empha-
sis is placed on the implementation of multi-resolution texture analysis
schemes. The experimental results were obtained when the analysed tex-
ture descriptors were applied to standard texture databases.
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1 Introduction

Texture is a fundamental property that has been widely applied to partition
digital images into regions that are homogenous with respect to some structural
measures. This approach is motivated by the fact that the objects that are
present in digital images are not described only by their shapes but also by the
structural relationship between the pixels in the image. While there is not a
widely accepted definition for texture within the computer vision community,
most of the developed techniques approach the texture analysis either from a
structural or a statistical perspective [5],[9],[12],[13]. In statistical approaches,
the texture is described by the spatial distribution of the pixels in the image [3]
while in structural approaches the texture is defined as a relational arrangement
of texture primitives [14],[18].

In this paper our aim is to evaluate two texture extraction techniques that
sample the image orientation at micro and macro levels. The texture analysis
techniques followed in this paper evaluate the global distributions of the local
image orientations that are calculated for each pixel in the image in a predefined
neighbourhood. In this paper we extracted the global image orientation using
the distribution of the edge orientation (EO) [10] and the Scale-Orientation His-
togram (SOH) that were developed for image retrieval [19]. The local orientation
features are measures that sample how strongly the texture is oriented along
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one direction and they are generally calculated at a particular observation scale
[6],[8],[15]. While the texture orientation is sensitive to the observation scale, in
this study one of our major goals is to evaluate the discriminative power of the
orientation distributions when calculated at different resolutions. In our study, to
further enhance the discriminative power of the texture orientation distribution,
some contrast measures were included in the construction of the local texture
descriptors.

This paper is organized as follows. Section 2 describes the mathematical
background behind the calculation of the edge orientation while Section 3 details
the Scale Orientation Histogram (SOH) texture extraction method. Section 4
presents the implementation of the texture classification framework. Section 5
describes the experimental results while in Section 6 are provided concluding
remarks.

2 Estimation of Edge Orientation

The local orientation in the image I is typically obtained by calculating the first
derivatives in two orthogonal directions [11] as follows,

∇I =
[

∂I

∂x
,
∂I

∂y

]
= [Ix, Iy], Θ = arctan

(
∂I/∂y

∂I/∂x

)
(1)

where ∇ defines the gradient operator and Θ is the edge orientation. To
circumvent the problems caused by the image noise, we have calculated the
partial derivatives in the x and y directions with filters that implement the
derivatives of the Gaussian function. This is achieved by filtering the image with
1-dimensional (1D) operators that are calculated using the expression illustrated
in equation 2.
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1√
2πσ

e−
x2

2σ2 ,
∂G

∂x
= − x

σ2
G(x) (2)

where σ is the scale of the Gaussian function. The main advantage of the
calculation of the partial derivatives using the derivative of the Gaussian resides
in the fact that the Gaussian has a smoothing effect and the scale parameter
σ controls the amount of noise reduction. After the calculation of the partial
derivatives, the weak edge responses were eliminated by applying a non-maxima
suppression procedure (similar to that described in [2]) and the edge orientation
is determined at micro level for each pixel in the image using the expression
illustrated in equation 1. The texture orientation can be estimated at macro-
level by the distribution of edge orientations that is calculated over the entire
image. The calculation of the macro-texture distributions will be addressed in
the next section.
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2.1 Estimation of the Dominant Orientation of Texture at Micro
and Macro-level

The problem of analysing the texture orientation at a given observation scale
is not a straightforward task as the orientation of the texture may be isotropic
at macro level but having strong orientation at micro-level. This issue has been
initially addressed in the paper by Germain et al. [7] and later in the paper
by Ilea et al. [10]. In this paper, we estimate the orientation of the texture at
micro level by constructing the histogram of orientations for all pixels in the local
neighbourhood Ω and the dominant orientation is selected as the dominant peak
in the histogram as follows,

HΘ =
⋃

p∈D

hΘ(p), hΘ(p) =
∫

Ω

δ(Θ(i, j), p)dΩ, (3)

where (i, j) ∈ Ω, D ∈ [0, 2π], δ(u, v) =
{

1 u = v
0 u 6= v

(4)

Θd = argmax(HΘ) (5)

where Θ is the local orientation, p is the orientation bin, D defines the orienta-
tion domain, HΘ is the distribution of local orientations and Θd is the dominant
orientation of the texture in the neighbourhood Ω. The dominant orientation
calculated at macro-level (HΘd) is simply estimated by the distribution of the
dominant orientations that are calculated over the entire image (see equation 6).

HΘd =
⋃

p∈D

∫

Γ

δ
(
ΘΩ

d (i, j), p
)
dΓ (6)

where Γ is the image domain. In equation (6) it should be noted that the
texture orientation is sampled at a predefined observation scale that is controlled
by the size of the local neighbourhood Ω.

Fig. 1. Distributions of edge orientation calculated for two textures (top - isotropic
and bottom - oriented) from the Outex database [17].
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3 Scale Orientation Histogram

In the estimation of the Scale Orientation Histogram (SOH), the orientation for
each pixel in the image is calculated in a predefined neighborhood Ω using an
expression that is derived from (1) as follows [11],[19],

ΘΩ(i, j) =
1
2

arctan

( ∫
Ω

2Ix(i, j)Iy(i, j)dΩ∫
Ω

(
I2
x(i, j)− I2

y (i, j)
)
dΩ

)
+

π

2
(7)

where (i,j) ∈ Ω are the pixel coordinates and Ix and Iy are the partial
derivatives calculated in the x and y directions. To calculate the SOH we need
to determine an additional measure (that is referred in Zhou et al. [19] to as
anisotropic strength) using the following expression,

gΩ(i, j) =
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Ω

(
I2
x(i, j)− I2
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Note that in equations (7) and (8) the orientation and anisotropic strength
measures are calculated within the neighborhood Ω that is related to the obser-
vation scale where the texture is analysed. From equation (8) it can be observed
that the anisotropic strength approaches the value 1.0 when the texture is ori-
ented and it has a value close to zero when the texture has isotropic character-
istics. The SOH is constructed by mapping the image intensity domain Γ into a
two dimensional (2D) representation as follows,

SOH(Ω, α) =
∑

(i,j)∈Γ

{gΩ(i, j) | ΘΩ(i, j) = α} (9)

where the local neighborhood can take values in the interval Ω ∈ [1,Γ ] and α
∈ [0, π]. The main advantage of the SOH is that by varying the scale observation
parameter Ω, we can construct a compact 2D representation of the image where
the orientation of the texture is sampled at different resolutions or observation
scales.

θ

Ω

Fig. 2. Example showing the SOH measures calculated for texture images illustrated
in Fig. 1. (Left) Isotropic texture. (Right) Oriented texture. For clarity purposes the
parameter Ω was varied in the interval [1,20] and the orientation Θ has been re-sampled
to 64 bins.
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4 Construction of Texture Feature Vectors

The dominant orientation in the image is a powerful local texture descriptor,
but it is worth noting that is not robust in sampling the difference between
textures that are subjected to illumination variation and image inversion. To
address this issue, the local texture orientation (HΘd) is augmented with mea-
sures such as contrast and local orientation coherence that are calculated in the
local neighbourhood Ω (where the dominant orientation of the texture has been
estimated). As indicated in Ilea et al. [10], the contrast measure is sampled by
the mean gray-scale value calculated in the neighbourhood Ω and the orientation
coherence (Θc) is calculated using the weighted standard deviation of the edge
orientation of all pixels in the neighbourhood as follows,

Θc(i, j) =

√√√√ 1
k2

∑

m,n∈wk×k(Ω)

(I2
x(m,n) + I2

y (m,n))(Θ(m,n)−Θave)2 (10)

where (i,j) are the coordinates of the pixel of interest, Ix and Iy are the partial
derivatives calculated for all pixels with coordinates (m,n) in the window wk×k =
Ω and Θave is the average edge orientation calculated for all pixels in the window
wk×k. The feature vector for the edge orientation (EO) technique is formed
by the three distributions, namely the dominant orientation, the contrast and
the orientation coherence that are calculated over the entire image at different
orientation scales (the orientation scales are varied in small increments to sample
the oriented or isotropic characteristics of the texture).

When analysing the texture orientation using the SOH method the feature
vector is defined by the SOH distribution that is calculated for a predefined
number of observation scales (see equation 9) and this distribution is augmented
by the contrast measure that is calculated as the distribution of the mean-gray
values calculated in the neighbourhood Ω.

5 Experiments and Results

The experimental results reported in this paper were conducted on Outex (TC
00000 and TC 00001) databases and on databases that were constructed by
recursively splitting the images contained in the Brodatz database [1]. The Outex
databases [17] are formed by 24 classes of standard textures (canvas, carpet and
tile) and they are depicted in Fig. 3.

The database TC 00000 consists of 480 texture images where the image size
is 128×128. Database TC 00001 comprises 2212 texture images where the image
size is 64×64. The Brodatz database used in our study consists of a set of 36 tex-
ture images. This database is formed by various oriented and isotropic textures
and the original images were split in 4 (database BD 00000), 16 (database BD
00001) and 64 sub-images (database BD 00002). Database BD 00000 consists of
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144 texture images (image size: 256×256), database BD 00001 has 576 texture
images (image size: 128×128) and database BD 00002 comprises 2304 images
(image size: 64×64). A number of Brodatz textures used in our experiments are
depicted in Fig. 4.

Fig. 3. The 24 textures contained in the Outex database [17].

Fig. 4. Samples of the Brodatz [1] textures used in our experiments.

In our experiments we have used half of the images contained in each database
for training while the remaining images were used for testing. The similarity
between the training and test textures is evaluated using the SVM classification
scheme [4]. In our experiments a number of tests were carried out to evaluate
the influence of the scale parameter of the derivative of Gaussian operators. The
experimental results indicated that the best results were obtained when the scale
parameter was set to small values in the range [0.5, 1]. In our implementation,
the scale parameter σ of the derivative of Gaussian operators was set to 0.5 to
minimise the windowing effects caused by the convolution with large kernels. The
next experimental tests were conducted to evaluate the effect of the observation
scale on the classification results.
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Table 1. The effect of the window size on the classification results.

Database Winsow size EO Accuracy SOH Accuracy
Ω [%] [%]

TC 00000 (128×128)
3×3 97.08 81.25
7×7 95.00 70.41

11×11 84.16 59.58

TC 00001 (64×64)
3×3 95.54 68.75
7×7 87.50 62.78

11×11 78.21 49.90

BD 00000 (256×56)
3×3 97.22 98.61
7×7 91.66 86.11

11×11 84.72 80.55

BD 00001 (128×128)
3×3 99.30 96.52
7×7 94.44 87.50

11×11 93.75 76.04

BD 00002 (64×64)
3×3 94.96 84.04
7×7 88.11 78.14

11×11 85.51 70.94

The classification results depicted in Table 1 indicate that the performance of
the edge orientation texture descriptors is higher than that offered by the texture
analysis techniques based on the SOH distributions. Also we note that for both
techniques the increase in the observation scale lowers the classification results.
This is motivated by the fact that the texture descriptors calculated at low obser-
vation scales capture the local orientation properties of the texture, while with
the increase in the observation scale the texture units sample better the isotropic
character of the texture. This observation is very important as this opens the
possibility to develop texture descriptors that sample the orientation-isotropy
properties of the image by varying the observation scale in small increments.

To this end, the next experiment was conducted in order to evaluate the
discriminative power of the developed texture descriptors when they are im-
plemented in multi-resolution forms. The classification results obtained when
the developed texture analysis techniques were applied to Outex and Brodatz
databases are depicted in Table 2. The results shown in Table 2 demonstrate
that the classification accuracy has substantially increased when the texture de-
scriptors were implemented in multi-resolution forms (see the results obtained
for the texture analysis scheme based on SOH). The classification results de-
picted in Table 2 indicate that the benefit of using multi-resolution operators
become obvious especially when they are applied to the classification of image
databases that are formed by small images (see the classification results obtained
for databases TC 00001 and BD 00002). To limit the space of Table 2 we have
presented the classification results when the texture is analysed at up to four
observation scales. An extensive set of classification results obtained for large
combinations of observation scales are available at the following web address:
http://www.eeng.dcu.ie/∼vsg/code/ICIAR2008-Results.pdf.
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Table 2. Multi-resolution classification results.

Database Winsow size EO Accuracy SOH Accuracy
Ω [%] [%]

TC 00000 (128×128)
(3× 3) + (5× 5) 99.16 93.75

(3× 3) + (5× 5) + (7× 7) 99.16 92.08
(3× 3) + (5× 5) + (7× 7) + (9× 9) 97.91 90.41

TC 00001 (64×64)
(3× 3) + (5× 5) 96.11 80.20

(3× 3) + (5× 5) + (7× 7) 95.54 82.19
(3× 3) + (5× 5) + (7× 7) + (9× 9) 94.22 81.06

BD 00000 (256×56)
(3× 3) + (5× 5) 100 97.22

(3× 3) + (5× 5) + (7× 7) 100 95.83
(3× 3) + (5× 5) + (7× 7) + (9× 9) 100 88.88

BD 00001 (128×128)
(3× 3) + (5× 5) 100 96.87

(3× 3) + (5× 5) + (7× 7) 99.65 94.79
(3× 3) + (5× 5) + (7× 7) + (9× 9) 99.65 95.13

BD 00002 (64×64)
(3× 3) + (5× 5) 95.05 88.46

(3× 3) + (5× 5) + (7× 7) 94.62 88.98
(3× 3) + (5× 5) + (7× 7) + (9× 9) 94.27 88.55

The results depicted in Tables 1 and 2 allow us to draw some additional
useful conclusions. The main important finding is that the distributions of image
orientation calculated at micro-level are appropriate to describe the global and
local properties of the texture. Another important finding is that the inclusion of
the observation scale in a multi-resolution representation allows the development
of a texture unit that is able to characterise in detail the orientation-anisotropy
properties of the texture. One important advantage of the proposed texture units
over other implementations such as Local Binary Patterns [16] and grayscale co-
occurrence matrices [5],[9] is that the orientation distributions evaluated in this
paper are π-periodic and they can be easily extended to encompass the rotational
invariance.

6 Conclusions

The aim of this paper was to evaluate the discriminative power of the local im-
age orientation in the process of texture classification. In this paper we have
analysed two texture analysis techniques where the image orientation was evalu-
ated at macro-level by the distributions of the texture units that are calculated
at micro-level. The main contribution of this paper resides in the evaluation
of the texture orientation at different observation scales and the experimental
results indicate that the multi-resolution distributions are efficient descriptors
to capture the orientation-anisotropy properties of the texture. In our future
studies we will further extend these texture descriptors in order to produce a
texture representation that is robust to illumination conditions and perspective
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distortions. Due to their compact representation and high discriminative power,
the texture descriptors analysed in this paper can be successfully included in the
development of applications ranging from image segmentation to image retrieval.
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