902 research outputs found
Relaxation kinetics in two-dimensional structures
We have studied the approach to equilibrium of islands and pores in two
dimensions. The two-regime scenario observed when islands evolve according to a
set of particular rules, namely relaxation by steps at low temperature and
smooth at high temperature, is generalized to a wide class of kinetic models
and the two kinds of structures. Scaling laws for equilibration times are
analytically derived and confirmed by kinetic Monte Carlo simulations.Comment: 6 pages, 7 figures, 1 tabl
Chiral three-nucleon forces and bound excited states in neutron-rich oxygen isotopes
We study the spectra of neutron-rich oxygen isotopes based on chiral two- and
three-nucleon interactions. First, we benchmark our many-body approach by
comparing ground-state energies to coupled-cluster results for the same
two-nucleon interaction, with overall good agreement. We then calculate bound
excited states in 21,22,23O, focusing on the role of three-nucleon forces, in
the standard sd shell and an extended sdf7/2p3/2 valence space. Chiral
three-nucleon forces provide important one- and two-body contributions between
valence neutrons. We find that both these contributions and an extended valence
space are necessary to reproduce key signatures of novel shell evolution, such
as the N = 14 magic number and the low-lying states in 21O and 23O, which are
too compressed with two-nucleon interactions only. For the extended space
calculations, this presents first work based on nuclear forces without
adjustments. Future work is needed and open questions are discussed.Comment: 6 pages, 4 figures, published versio
Implementation of an Optimal First-Order Method for Strongly Convex Total Variation Regularization
We present a practical implementation of an optimal first-order method, due
to Nesterov, for large-scale total variation regularization in tomographic
reconstruction, image deblurring, etc. The algorithm applies to -strongly
convex objective functions with -Lipschitz continuous gradient. In the
framework of Nesterov both and are assumed known -- an assumption
that is seldom satisfied in practice. We propose to incorporate mechanisms to
estimate locally sufficient and during the iterations. The mechanisms
also allow for the application to non-strongly convex functions. We discuss the
iteration complexity of several first-order methods, including the proposed
algorithm, and we use a 3D tomography problem to compare the performance of
these methods. The results show that for ill-conditioned problems solved to
high accuracy, the proposed method significantly outperforms state-of-the-art
first-order methods, as also suggested by theoretical results.Comment: 23 pages, 4 figure
Nonorientable spacetime tunneling
Misner space is generalized to have the nonorientable topology of a Klein
bottle, and it is shown that in a classical spacetime with multiply connected
space slices having such a topology, closed timelike curves are formed.
Different regions on the Klein bottle surface can be distinguished which are
separated by apparent horizons fixed at particular values of the two angular
variables that eneter the metric. Around the throat of this tunnel (which we
denote a Klein bottlehole), the position of these horizons dictates an ordinary
and exotic matter distribution such that, in addition to the known diverging
lensing action of wormholes, a converging lensing action is also present at the
mouths. Associated with this matter distribution, the accelerating version of
this Klein bottlehole shows four distinct chronology horizons, each with its
own nonchronal region. A calculation of the quantum vacuum fluctuations
performed by using the regularized two-point Hadamard function shows that each
chronology horizon nests a set of polarized hypersurfaces where the
renormalized momentum-energy tensor diverges. This quantum instability can be
prevented if we take the accelerating Klein bottlehole to be a generalization
of a modified Misner space in which the period of the closed spatial direction
is time-dependent. In this case, the nonchronal regions and closed timelike
curves cannot exceed a minimum size of the order the Planck scale.Comment: 11 pages, RevTex, Accepted in Phys. Rev.
Benchmark Test Calculation of a Four-Nucleon Bound State
In the past, several efficient methods have been developed to solve the
Schroedinger equation for four-nucleon bound states accurately. These are the
Faddeev-Yakubovsky, the coupled-rearrangement-channel Gaussian-basis
variational, the stochastic variational, the hyperspherical variational, the
Green's function Monte Carlo, the no-core shell model and the effective
interaction hyperspherical harmonic methods. In this article we compare the
energy eigenvalue results and some wave function properties using the realistic
AV8' NN interaction. The results of all schemes agree very well showing the
high accuracy of our present ability to calculate the four-nucleon bound state.Comment: 17 pages, 1 figure
Convergence of the critical attractor of dissipative maps: Log-periodic oscillations, fractality and nonextensivity
For a family of logistic-like maps, we investigate the rate of convergence to
the critical attractor when an ensemble of initial conditions is uniformly
spread over the entire phase space. We found that the phase space volume
occupied by the ensemble W(t) depicts a power-law decay with log-periodic
oscillations reflecting the multifractal character of the critical attractor.
We explore the parametric dependence of the power-law exponent and the
amplitude of the log-periodic oscillations with the attractor's fractal
dimension governed by the inflexion of the map near its extremal point.
Further, we investigate the temporal evolution of W(t) for the circle map whose
critical attractor is dense. In this case, we found W(t) to exhibit a rich
pattern with a slow logarithmic decay of the lower bounds. These results are
discussed in the context of nonextensive Tsallis entropies.Comment: 8 pages and 8 fig
Large-space shell-model calculations for light nuclei
An effective two-body interaction is constructed from a new Reid-like
potential for a large no-core space consisting of six major shells and is used
to generate the shell-model properties for light nuclei from =2 to 6. (For
practical reasons, the model space is partially truncated for =6.) Binding
energies and other physical observables are calculated and compare favorably
with experiment.Comment: prepared using LaTex, 21 manuscript pages, no figure
Low-Energy Universality in Atomic and Nuclear Physics
An effective field theory developed for systems interacting through
short-range interactions can be applied to systems of cold atoms with a large
scattering length and to nucleons at low energies. It is therefore the ideal
tool to analyze the universal properties associated with the Efimov effect in
three- and four-body systems. In this "progress report", we will discuss recent
results obtained within this framework and report on progress regarding the
inclusion of higher order corrections associated with the finite range of the
underlying interaction.Comment: Commissioned article for Few-Body Systems, 47 pp, 16 fig
Search for direct production of charginos and neutralinos in events with three leptons and missing transverse momentum in √s = 7 TeV pp collisions with the ATLAS detector
A search for the direct production of charginos and neutralinos in final states with three electrons or muons and missing transverse momentum is presented. The analysis is based on 4.7 fb−1 of proton–proton collision data delivered by the Large Hadron Collider and recorded with the ATLAS detector. Observations are consistent with Standard Model expectations in three signal regions that are either depleted or enriched in Z-boson decays. Upper limits at 95% confidence level are set in R-parity conserving phenomenological minimal supersymmetric models and in simplified models, significantly extending previous results
Measurement of D*+/- meson production in jets from pp collisions at sqrt(s) = 7 TeV with the ATLAS detector
This paper reports a measurement of D*+/- meson production in jets from
proton-proton collisions at a center-of-mass energy of sqrt(s) = 7 TeV at the
CERN Large Hadron Collider. The measurement is based on a data sample recorded
with the ATLAS detector with an integrated luminosity of 0.30 pb^-1 for jets
with transverse momentum between 25 and 70 GeV in the pseudorapidity range
|eta| < 2.5. D*+/- mesons found in jets are fully reconstructed in the decay
chain: D*+ -> D0pi+, D0 -> K-pi+, and its charge conjugate. The production rate
is found to be N(D*+/-)/N(jet) = 0.025 +/- 0.001(stat.) +/- 0.004(syst.) for
D*+/- mesons that carry a fraction z of the jet momentum in the range 0.3 < z <
1. Monte Carlo predictions fail to describe the data at small values of z, and
this is most marked at low jet transverse momentum.Comment: 10 pages plus author list (22 pages total), 5 figures, 1 table,
matches published version in Physical Review
- …
