113 research outputs found

    New battery model and state-of-health determination through subspace parameter estimation and state-observer techniques

    Get PDF
    This paper describes a novel adaptive battery model based on a remapped variant of the well-known Randles' lead-acid model. Remapping of the model is shown to allow improved modeling capabilities and accurate estimates of dynamic circuit parameters when used with subspace parameter-estimation techniques. The performance of the proposed methodology is demonstrated by application to batteries for an all-electric personal rapid transit vehicle from the Urban Light TRAnsport (ULTRA) program, which is designated for use at Heathrow Airport, U. K. The advantages of the proposed model over the Randles' circuit are demonstrated by comparisons with alternative observer/estimator techniques, such as the basic Utkin observer and the Kalman estimator. These techniques correctly identify and converge on voltages associated with the battery state-of-charge (SoC), despite erroneous initial conditions, thereby overcoming problems attributed to SoC drift (incurred by Coulomb-counting methods due to overcharging or ambient temperature fluctuations). Observation of these voltages, as well as online monitoring of the degradation of the estimated dynamic model parameters, allows battery aging (state-of-health) to also be assessed and, thereby, cell failure to be predicted. Due to the adaptive nature of the proposed algorithms, the techniques are suitable for applications over a wide range of operating environments, including large ambient temperature variations. Moreover, alternative battery topologies may also be accommodated by the automatic adjustment of the underlying state-space models used in both the parameter-estimation and observer/estimator stages

    Double-magic nature of 132Sn and 208Pb through lifetime and cross-section measurements

    Get PDF
    Single-neutron states in Sn133 and Pb209, which are analogous to single-electron states outside of closed atomic shells in alkali metals, were populated by the (Be9, Be8) one-neutron transfer reaction in inverse kinematics using particle-γ coincidence s

    Transient field g factor and mean-life measurements with a rare isotope beam of 126Sn

    Get PDF
    Background: The g factors and lifetimes of the 21+ states in the stable, proton-rich Sn isotopes have been measured, but there is scant information on neutron-rich Sn isotopes. Purpose: Measurement of the g factor and the lifetime of the 21+ state at 1.141 MeV in neutron-rich 126Sn (T1/2=2. 3×105y). Method: Coulomb excitation in inverse kinematics together with the transient field and the Doppler shift attenuation techniques were applied to a radioactive beam of 126Sn at the Holifield Radioactive Ion Beam Facility. Results: g(21+)=-0.25(21) and τ(21+)=1.5(2) ps were obtained. Conclusions: The data are compared to large-scale shell-model and quasiparticle random-phase calculations. Neutrons in the h11/2 and d3/2 orbitals play an important role in the structure of the 21+ state of 126Sn. Challenges, limitations, and implications for such experiments at future rare isotope beam facilities are discussed

    Role of dynamical particle-vibration coupling in reconciliation of the d3/2d_{3/2} puzzle for spherical proton emitters

    Get PDF
    It has been observed that decay rate for proton emission from d3/2d_{3/2} single particle state is systematically quenched compared with the prediction of a one dimensional potential model although the same model successfully accounts for measured decay rates from s1/2s_{1/2} and h11/2h_{11/2} states. We reconcile this discrepancy by solving coupled-channels equations, taking into account couplings between the proton motion and vibrational excitations of a daughter nucleus. We apply the formalism to proton emitting nuclei 160,161^{160,161}Re to show that there is a certain range of parameter set of the excitation energy and the dynamical deformation parameter for the quadrupole phonon excitation which reproduces simultaneously the experimental decay rates from the 2d3/2d_{3/2}, 3s1/2s_{1/2} and 1h11/2h_{11/2} states in these nuclei.Comment: RevTex, 12 pages, 4 eps figure

    Electromagnetic properties of the 21+ state in 134Te: Influence of core excitation on single-particle orbits beyond 132Sn

    Get PDF
    The g factor and B(E2) of the first excited 2+ state have been measured following Coulomb excitation of the neutron-rich semimagic nuclide 134Te (two protons outside 132Sn) produced as a radioactive beam. The precision achieved matches related g-factor m

    Theoretical description of deformed proton emitters: nonadiabatic coupled-channel method

    Get PDF
    The newly developed nonadiabatic method based on the coupled-channel Schroedinger equation with Gamow states is used to study the phenomenon of proton radioactivity. The new method, adopting the weak coupling regime of the particle-plus-rotor model, allows for the inclusion of excitations in the daughter nucleus. This can lead to rather different predictions for lifetimes and branching ratios as compared to the standard adiabatic approximation corresponding to the strong coupling scheme. Calculations are performed for several experimentally seen, non-spherical nuclei beyond the proton dripline. By comparing theory and experiment, we are able to characterize the angular momentum content of the observed narrow resonance.Comment: 12 pages including 10 figure

    Decay properties of the new isotopes 172Hg and 173Hg

    Get PDF
    The α decays of the two neutron-deficient nuclei 172Hg and 173Hg were observed for the first time using the 78Kr(96Ru,2n) and 80Kr(96Ru,3n) reactions, respectively. The reaction products were dispersed according to their mass-to-charge state ratios in the Argonne Fragment Mass Analyzer and implanted in a double-sided silicon strip detector, where their subsequent decays were studied using spatial and time correlations between implants and decays. A half-life of 250(+350-90) μs and an energy of 7350(12) keV were deduced for the α decay of 172Hg. In 173Hg the half-life was measured to be 0.93(+0.57-0.26) ms and the corresponding energy is 7211(11) keV. In addition, the half-life and energy of the α decay of 174Hg were measured more precisely. The reduced widths deduced for these Hg isotopes indicate that the observed decays correspond to unhindered Δl = 0 transitions. The α-decay Q values are compared with the values calculated using mass tables by Möller and Nix, and by Liran and Zeldes. The latter mass tables show better agreement with the data

    Superdeformation and prolate-oblate competition in Tl nuclei

    Get PDF
    Spectroscopic studies of weakly populated proton i13/2 bands in superdeformed Tl nuclei (around mass 190) and in the normally deformed, very light 183Tl nucleus are discussed. Among the results presented, the first measurement of a superdeformed quadrupole moment in an odd-Z nucleus, 191Tl, is reported. The experiments were conducted with the Gammasphere array as "stand-alone" device and coupled with the Argonne Fragment Mass Analyzer

    One-neutron transfer study of 135Te and 137Xe by particle-γ coincidence spectroscopy: The ν1i13/2 state at N = 83

    Get PDF
    Additional information is reported on single-neutron states above the doubly closed-shell nucleus 132Sn. A radioactive ion beam of 134Te(N=82) at 565 MeV and a stable ion beam of 136Xe(N=82) at 560 MeV were used to study single-neutron states in the N=8

    Early Signal of Emerging Nuclear Collectivity in Neutron-Rich 129Sb

    Get PDF
    Radioactive 129Sb, which can be treated as a proton plus semimagic 128Sn core within the particle-core coupling scheme, was studied by Coulomb excitation. Reduced electric quadrupole transition probabilities, B(E2), for the 2+ ⊗ πg7=2 multiplet members and candidate πd5=2 state were measured. The results indicate that the total electric quadrupole strength of 129Sb is a factor of 1.39(11) larger than the 128Sn core, which is in stark contrast to the expectations of the empirically successful particle-core coupling scheme. Shell-model calculations performed with two different sets of nucleon-nucleon interactions suggest that this enhanced collectivity is due to constructive quadrupole coherence in the wave functions stemming from the proton-neutron residual interactions, where adding one nucleon to a core near a double-shell closure can have a pronounced effect. The enhanced electric quadrupole strength is an early signal of the emerging nuclear collectivity that becomes dominant away from the shell closure.The authors gratefully acknowledge the HRIBF operations staff for providing the beams used in this study and T. Papenbrock, A. Volya, and J. L. Wood for fruitful discussions. This material is based upon work supported by the U.S. Department of Energy (DOE), Office of Science, Office of Nuclear Physics, under Contract No. DE-AC05- 00OR22725, and this research used resources of the Holifield Radioactive Ion Beam Facility of Oak Ridge National Laboratory, which was a DOE Office of Science User Facility. This research was also sponsored by the Australian Research Council under Grants No. DP0773273 and No. DP170101673, and by the U.S. DOE under Contract No. DE-FG02-96ER40963 (U. T. K.). T. J. G. acknowledges the support of the Australian Government Research Training Program. E. P.-R. acknowledges the financial support of Tecnológica-Universidad Nacional Autónoma de M´exico, Grant No. PAPIIT-IN110418
    corecore