690 research outputs found

    Ginsburg-Landau Expansion in a non-Fermi Superconductor

    Full text link
    We study the Ginsburg-Landau expansion for the non-Fermi model proposed by Anderson. We analyze the deviations of the main properties of a non-Fermi superconductor from the isotropic s-wave bidimensiona superconductor.Comment: 7 pages, 3 figures, accepted for publication in Physica

    Phylogeny and ecological processes influence grass coexistence at different spatial scales within the steppe biome

    Get PDF
    Phylogenetic analyses are essential for disentangling how environmental filtering and competition determine species coexistence across spatial scales. Inner Mongolia steppe has strong environmental gradients, but how the phylogenetic relatedness of co-occurring species and phylogenetic signals of functional traits change across spatial scales remains unclear. We investigated the phylogenetic structure of grass assemblages along environmental gradients from regional to local scales, and measured functional traits within assemblages. We compared phylogenetic signals of plant traits between the same numbers of species randomly selected from the regional pool and species observed at the local scale, did phylogenetic principal component analysis to infer the main factors driving species coexistence, and examined the key plant trait–environment relationships across the phylogeny to reveal ecological adaptation mechanisms. Regionally, grass species were phylogenetically clustered with contrasting climate preferences. With decreasing spatial scales, species richness declined, changing from phylogenetically clustered to overdispersed, and phylogenetic signals of plant traits became weaker. At the local scale, grass assemblages were structured by soil water content and neighbor density, and the trait–environment relationships were less clear than those at the regional scale. This study demonstrated that at smaller scales, co-occurring grass species in the steppe tended to be more phylogenetically overdispersed, and that phylogenetic signals of plant functional traits became weaker with increasing abiotic and biotic interactions. Our findings contributed evidence for understanding species coexistence and maintenance at scales spanning regional to local communities in the East Asia steppe biome

    Theoretical investigation of bridge seismic responses with pounding under near-fault vertical ground motions

    Get PDF
    Vertical earthquake loading is normally regarded not as important as its horizontal components and are not explicitly considered in many seismic design codes. However, some previous severe near-fault earthquakes reveal that the vertical ground motion component can be much larger than the horizontal components and may cause serious damage to the bridge structures. This paper theoretically investigates the vertical pounding responses of a two-span continuous bridge subjected to the severe near-fault vertical ground motions. The bridge is simplified as a continuous beam-spring-rod model. The structural wave effect and the vertical pounding between the bridge girder and the supporting bearing are considered, and the theoretical solutions of bridge seismic responses are derived from the expansion of transient wave functions as a series of eigenfunctions. The effects of vertical earthquake and vertical pounding on the bridge bearing, girder and pier are investigated. The numerical results show that the severe vertical earthquake loading may cause the bridge girder to separate from the supporting bearing and hence result in vertical poundings between them when they are in contact again. These vertical poundings can significantly alter the seismic responses of the bridge structure and may cause severe damage to the bridge components such as bridge girder, supporting bearing and bridge pier. Neglecting the influence of vertical earthquake loading may lead to inaccurate estimation of seismic responses of bridge structures, especially when they are subjected to near-fault earthquake with relatively large vertical motion

    Interacting Dipoles from Matrix Formulation of Noncommutative Gauge Theories

    Get PDF
    We study the IR behavior of noncommutative gauge theory in the matrix formulation. We find that in this approach, the nature of the UV/IR mixing is easily understood, which allows us to perform a reliable calculation of the quantum effective action for the long wavelength modes of the noncommutative gauge field. At one loop, we find that our description is weakly coupled only in the supersymmetric theory. At two loops, we find non-trivial interaction terms suggestive of dipole degrees of freedom. These dipoles exhibit a channel duality reminiscent of string theory.Comment: LaTeX 11 pages, 4 figures; v.2 minor changes and some references added; v.3 many more technical details added and significantly different presentation, use REVTeX 4, to appear in PR

    Paramagnetic dominance, the sign of the beta function and UV/IR mixing in non-commutative U(1)

    Get PDF
    U(1) gauge theory on non-commutative Minkowski space-time in the Feynman-'t Hooft background gauge is studied. In particular, UV divergences and non-commutative IR divergent contributions to the two, three and four-point functions are explicitly computed at one loop. We show that the negative sign of the beta function results from paramagnetism --producing UV charge anti-screening-- prevailing over diamagnetism --giving rise toUV charge screening. This dominance in the field theory setting corresponds to tachyon magnification dominance in the string theory framework. Our calculations provide an explicit realization of UV/IR mixing and lead to an IR renormalization of the coupling constant, where now paramagnetic contributions produce screening and diamagnetic contributions anti-screening.Comment: 39 pages, 7 eps figures; typos corrected, few comments adde

    A variational approach to the macroscopic electrodynamics of anisotropic hard superconductors

    Full text link
    We consider the Bean's critical state model for anisotropic superconductors. A variational problem solved by the quasi--static evolution of the internal magnetic field is obtained as the Γ\Gamma-limit of functionals arising from the Maxwell's equations combined with a power law for the dissipation. Moreover, the quasi--static approximation of the internal electric field is recovered, using a first order necessary condition. If the sample is a long cylinder subjected to an axial uniform external field, the macroscopic electrodynamics is explicitly determined.Comment: 24 pages, 15 figure

    Autoreceptor Control of Peptide/Neurotransmitter Corelease from PDF Neurons Determines Allocation of Circadian Activity in Drosophila

    Get PDF
    SummaryDrosophila melanogaster flies concentrate behavioral activity around dawn and dusk. This organization of daily activity is controlled by central circadian clock neurons, including the lateral-ventral pacemaker neurons (LNvs) that secrete the neuropeptide PDF (pigment dispersing factor). Previous studies have demonstrated the requirement for PDF signaling to PDF receptor (PDFR)-expressing dorsal clock neurons in organizing circadian activity. Although LNvs also express functional PDFR, the role of these autoreceptors has remained enigmatic. Here, we show that (1) PDFR activation in LNvs shifts the balance of circadian activity from evening to morning, similar to behavioral responses to summer-like environmental conditions, and (2) this shift is mediated by stimulation of the Gα,s-cAMP pathway and a consequent change in PDF/neurotransmitter corelease from the LNvs. These results suggest another mechanism for environmental control of the allocation of circadian activity and provide new general insight into the role of neuropeptide autoreceptors in behavioral control circuits

    Ginzburg-Landau Expansion in Non-Fermi Liquid Superconductors: Effect of the Mass Renormalization Factor

    Full text link
    We reconsider the Ginzburg-Landau expansion for the case of a non-Fermi liquid superconductor. We obtain analytical results for the Ginzburg-Landau functional in the critical region around the superconducting phase transition, T <= T_c, in two special limits of the model, i.e., the spin-charge separation case and the anomalous Fermi liquid case. For both cases, in the presence of a mass renormalization factor, we derived the form and the specific dependence of the coherence length, penetration depth, specific heat jump at the critical point, and the magnetic upper critical field. For both limits the obtained results reduce to the usual BCS results for a two dimensional s-wave superconductor. We compare our results with recent and relevant theoretical work. The results for a d--wave symmetry order parameter do not change qualitatively the results presented in this paper. Only numerical factors appear additionally in our expressions.Comment: accepted for publication in Physical Review

    Evaluating social science and humanities knowledge production: An exploratory analysis of dynamics in science systems

    Get PDF
    Knowledge is gaining increasing importance in modern-day society as a factor of production and, ultimately, growth. This article explores the dynamics in university knowledge production and its effect on the state of university-industry-policy exchange in the Netherlands. Science systems are said to be in transformation. The university has evolved from performing conventional research and educational functions to serving as an innovation-promoting knowledge hub; dynamics that have received mixed reactions. The social sciences and humanities (SSH) take a special position, insofar as their focus seems primarily to be placed on conventional research and educational functions, and not directly on (commercial) valorization. Societal changes are, however, pressing for a reconsideration of the role of SSH. In our article, we distinguish between three important new movements that seem to be affecting SSH. It is believed that these movements, which are already having an impact today, will considerably influence SSH in the future. These developments are further differentiation, synthesis between the various subdisciplines of SSH and the natural sciences, and shifts in paradigms. The aims of this article are twofold: (1) to assess what is believed to be the most likely development of SSH by means of discovering relevant subsets of factors influencing university knowledge production; and (2) to discover whether the knowledge production factors show characteristics of a general development similar to the "Mode 2" concept. A systematic qualitative database was created by means of 22 semi-structured personal interviews with key representatives from business, university and the policy sector. Our explanatory framework employs an artificial intelligence method, i.e. rough set analysis. On the basis of these results, we find that a small minority of the respondents prefers a closer relationship of SSH to society, government and industry, and other institutional centers of authority, whilst interdisciplinarity in particular is regarded as having an overall positive influence on the future of SSH in the Netherlands. Consequently, the idea of a clear distinction between Mode 1 and Mode 2 knowledge production, i.e. traditional knowledge and knowledge carried out in the context of application, is not supported by our data. © 2009 Interdisciplinary Centre for Comparative Research in the Social Sciences and ICCR Foundation

    S-Brane Thermodynamics

    Get PDF
    The description of string-theoretic s-branes at g_s=0 as exact worldsheet CFTs with a (lambda cosh X^0) or (lambda e^(X^0)) boundary interaction is considered. Due to the imaginary-time periodicity of the interaction under X^0 -> X^0 + 2 pi i, these configurations have intriguing similarities to black hole or de Sitter geometries. For example, the open string pair production as seen by an Unruh detector is thermal at temperature T = 1/4 pi. It is shown that, despite the rapid time dependence of the s-brane, there exists an exactly thermal mixed state of open strings. The corresponding boundary state is constructed for both the bosonic and superstring cases. This state defines a long-distance Euclidean effective field theory whose light modes are confined to the s-brane. At the critical value of the coupling lambda=1/2, the boundary interaction simply generates an SU(2) rotation by pi from Neumman to Dirichlet boundary conditions. The lambda=1/2 s-brane reduces to an array of sD-branes (D-branes with a transverse time dimension) on the imaginary time axis. The long range force between a (bosonic) sD-brane and an ordinary D-brane is shown from the annulus diagram to be 11/12 times the force between two D-branes. The linearized time-dependent RR field F=dC produced by an sD-brane in superstring theory is explicitly computed and found to carry a half unit of s-charge Q_s=\int_S *F=1/2, where S is any transverse spacelike slice.Comment: 42 page
    • 

    corecore