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1. INTRODUCTION
It is generally believed that a large safety factor against
gravity loads exists in properly engineered structures
including bridges (Papazoglou and Elnashai 1996).
Many previous far-field seismic records also reveal that
the amplitude of vertical component of an earthquake
ground motion is normally less than those of the
horizontal components (Yang and Lee 2007). Owing to
these reasons, many current seismic design codes do not
explicitly consider the vertical earthquake ground
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Abstract: Vertical earthquake loading is normally regarded not as important as its
horizontal components and are not explicitly considered in many seismic design codes.
However, some previous severe near-fault earthquakes reveal that the vertical ground
motion component can be much larger than the horizontal components and may cause
serious damage to the bridge structures. This paper theoretically investigates the
vertical pounding responses of a two-span continuous bridge subjected to the severe
near-fault vertical ground motions. The bridge is simplified as a continuous beam-
spring-rod model. The structural wave effect and the vertical pounding between the
bridge girder and the supporting bearing are considered, and the theoretical solutions
of bridge seismic responses are derived from the expansion of transient wave functions
as a series of eigenfunctions. The effects of vertical earthquake and vertical pounding
on the bridge bearing, girder and pier are investigated. The numerical results show that
the severe vertical earthquake loading may cause the bridge girder to separate from the
supporting bearing and hence result in vertical poundings between them when they are
in contact again. These vertical poundings can significantly alter the seismic responses
of the bridge structure and may cause severe damage to the bridge components such
as bridge girder, supporting bearing and bridge pier. Neglecting the influence of
vertical earthquake loading may lead to inaccurate estimation of seismic responses of
bridge structures, especially when they are subjected to near-fault earthquake with
relatively large vertical motion.
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motions. For example, vertical ground motion is
considered as an equivalent static vertical load when the
site peak ground acceleration (PGA) is larger than 0.6 g
(Button et al. 2002); Canadian Highway Bridge Design
Code takes into account the vertical earthquake ground
motion in a simplified way by increasing or decreasing
the dead load action in load combinations, irrespective
of earthquake magnitude, epicentral distance and site
soil conditions (Bozorgnia and Campbell 2004). When
the effects of vertical earthquake ground motions are
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They suggested that the vertical component of ground
motion should be considered in analysis when the
proposed structure was sited within approximately 
25 km of an earthquake source. Button et al. (2002)
examined several parameters including ground motion
and structural system characteristics through primarily
linear dynamic analyses and recommended a 
re-examination of existing design guidelines. Kunnath 
et al. (2008) examined a two-span highway bridge with
a double-column bent considering six different
structural configurations. The vertical component of
ground motion was found to cause significant
amplification in axial force demands in columns and
moment demands in girders at both the mid-span and
the face of the bent cap. Moreover, the increase of girder
moment due to vertical motion could make the demand
exceed the capacity, hence failure would be expected.
Legeron and Sheikh (2009) proposed a theoretical
approach to calculate support reactions of bridges under
vertical ground motion. Jonsson et al. (2010)
investigated the seismic response of a base-isolated
bridge subjected to strong near-fault ground motions.
The study showed that the near-fault pulse dominated
the bridge response and an improved design method was
proposed to consider near-fault pulse. Kim et al. (2011a,
b) performed analytical and experimental studies to
examine the effect of vertical ground motion on RC
bridge piers. They investigated RC bridge piers by sub-
structured pseudo-dynamic tests with combined
horizontal and vertical excitations and by cyclic tests
with different constant axial load levels. It was found
that RC structures subjected to simultaneous horizontal
and vertical motions were more vulnerable than those
subjected to horizontal ground motion only. Gulerce 
et al. (2012) described the development of the seismic
demand models for assessing the need to consider
vertical motions in seismic bridge design. It was
concluded that the vertical ground motions had a
significant effect on three engineering demand
parameters (EDPs), i.e. the axial force demand in
columns, positive and negative moment demands at the
face of the bent cap and positive and negative moment
demands at the middle of the span. Lee and Mosalam
(2014) carried out shaking table tests on the reduced-
scale bridge columns under combined horizontal and
vertical ground motions. Test results indicated that
tension in the column caused by vertical excitation had
the potential to degrade its shear capacity.

For a bridge structure subjected to a near-fault
earthquake, the bearings of the bridge might be
damaged due to the large vertical excitations, which
may result in the bridge girder being lift up from the
supporting bearings and impacting the bearing when
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explicitly considered in the design process, the vertical
response spectrum is taken typically as 2/3 of the
horizontal response spectrum for the entire period range
of engineering interest as proposed by Newmark
(Elnashai and Papazoglou 1996). However, analyses of
strong motion data indicate that the ratio of vertical to
horizontal component (V/H) is sensitive to the
frequency content of the seismic wave and distance
from the epicentre. The ratios are normally larger for
high frequency contents at short epicentral distances and
smaller for low frequency contents at longer distances.
It has been observed that in the ground motions
generated from near-field earthquakes, the vertical to
horizontal (V/H) ratio often exceeds unity, i.e. the
vertical component is greater than the horizontal
components. For example, in the 1994 Northridge
earthquake, some recorded vertical acceleration was
1.18 g, and the V/H peak acceleration ratio was as high
as 1.79 (Papazoglou and Elnashai 1996). In the 1995
Kobe earthquake, the peak of the vertical ground
acceleration could be twice as high as that of the
horizontal acceleration (Yang and Lee 2007). In the
1999 Chi-Chi earthquake, the PGA of vertical
acceleration at station TCU068 reached 0.519 g, while
in the two horizontal directions, the PGAs were 0.364 g
and 0.501 g only (Wang et al. 2002). In the near-fault
region (within rupture distance of 20 km) of the 2008
Wenchuan earthquake, the average and the maximum
value of V/H were 0.89 and 1.20, respectively (Wang
and Xie 2009).

Many numerical and experimental studies have been
carried out to investigate the influence of vertical
ground motions on the seismic responses of bridge
structures. Saadeghvaziri and Foutch (1991) studied the
inelastic behavior of reinforced concrete columns under
combined horizontal and vertical accelerations. It was
found that varying axial force in the column could result
in pinched hysteresis, which in turn caused larger
horizontal displacements and fluctuation in the shear
capacity of the column. Yu (1996) analyzed the forces
in the piers of three overpasses based on the three-
dimensional (3D) models by using the Sylmar Hospital
(Northridge) records as inputs. It was found that the
axial force and longitudinal moment could increase by
21% and 7% if vertical component was considered.
Elnashai and Papazoglou (1996) reported analytical and
field evidence of the damaging effect of vertical ground
motions on buildings and highway bridge structures.
They concluded that strong vertical motions induced
significant fluctuations in axial forces leading to a
reduction of the column shear capacity. Collier and
Elnashai (2001) then proposed simple procedures for
assessing the significance of vertical ground motions.



the girder is in contact again with the bearing. A huge
impact force may develop owing to the dropping of the
bridge girder to the bearings. This vertical impact may
result in damages to the bridge girder, supporting
bearings and/or even piers. For example, Figure 1(a)
shows the vertical pounding damages to piers in the
2011 Christchurch earthquake (Chouw and Hao 2012),
and Figure 1(b) shows the very unusual fractures
developed in a bearing of Nielsen Bridge during the
1995 great Hanshin-Awaji earthquake due to vertical
pounding (Tanimura et al. 2002).

Previous studies on the pounding responses mainly
focused on the adjacent buildings (e.g., Pant and
Wijeyewickrema 2013). For bridge structures,
poundings are normally assumed to occur along the
longitudinal directions of the bridge decks (Bi et al.
2010, 2011, 2013; Bi and Hao 2013). Although the
vertical poundings between the uplifted bridge girders
and supporting bearings was reported (Tanimura et al.
2002, Chouw and Hao 2012) and observed in a number
of earthquakes, no study that is devoted to analyzing the
effects of vertical pounding between bridge girder and
bearings on bridge responses can be found in the
literature. It is necessary to investigate the effect of
possible vertical pounding effect on bridge seismic
responses under strong vertical earthquake motion.

This paper conducts a theoretical derivation to
estimate the seismic responses of bridge structures
under near-fault vertical earthquake ground excitation
and investigate the effect of vertical pounding on bridge
structural responses. A continuous Beam-Spring-Rod
model is adopted to simulate the seismic response of
bridge. The theoretical solution of seismic responses,
considering the structural wave effect and the possible

pounding effect, are derived by the expansion of
transient wave functions in a series of eigenfunctions.
The seismic responses of a bridge model under three
typical near-fault vertical earthquake ground motions
are calculated. The effect of vertical earthquake ground
motion and vertical pounding on bridge bearing, girder
and pier are investigated.

2. THEORETICAL MODEL AND SOLUTIONS
2.1. Theoretical Model and Equation of Motion

A two-span continuous bridge as shown in Figure 2 is
adopted as an example in the present study. The length
of each span is x0 and the height of the pier is L. For
the bridge girder, the cross-section area is A, the
Young’s modulus is E, the area moment of inertia is I
and the mass density is ρ. The corresponding
parameters for the pier are Ar, Er and ρr respectively.
The two ends of the bridge girder (points A and B in
Figure 2) are simply supported, and the base of the
pier is fixed. A one-sided vertical spring with the
compressive stiffness K and zero tensile stiffness is
used to approximately model the bearing support. The
self-weight of the bridge girder is represented by a
uniformly distributed load q. The vertical ground
motion from near-fault earthquake is denoted as B(t).
It should be noted that the primary objective of this
paper is to investigate the vertical pounding responses
of bridge structures to vertical earthquake loadings,
although the horizontal motions will cause bridge
structures to vibrate and the responses induced 
by horizontal and vertical ground motions are
coupled, for clear observations of the effects of
vertical ground excitations, in this study only the
vertical ground excitations are considered. Further
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Figure 1. Typical vertical pounding induced damages in previous major earthquakes: (a) vertical pounding damage to bridge pier in the

2011 Christchurch earthquake (Chouw and Hao 2012); and (b) unusual fractures developed in a bridge bearing in the 1995 great 

Hanshin-Awaji earthquake (Tanimura et al. 2002)



study to investigate the coupled effects of horizontal
and vertical ground motions on vertical pounding
responses between bridge girders and supports is
deemed necessary. Moreover, although damages to
bridge pier and bearings owing to vertical poundings
have been observed in previous earthquakes, to avoid
further complicate the problem and allow the study
concentrate on investigating the influences of vertical
pounding on bridge responses, in the present study
material nonlinearity is not considered.

In order to obtain the theoretical solution of seismic
responses of bridge structures subjected to vertical
earthquake loading, the vertical seismic excitation is
expanded as the superposition of a series of harmonic
components by the Fourier transformation as follows

(1)

where B, ω and Φ are the ground displacement
amplitude, circular frequency and phase angle of each
component, N0 is the number of frequency points
required to well cover the frequency band of ground
motions.

By assuming the bridge girder as a Bernoulli-Euler
Beam and the pier as a St. Venant Rod, the equations of
motion of the bridge shown in Figure 2 can be described
as follows:

(2)
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In these equations, yi (x, t) (i = 1, 2) is the beam
deflection and u(ξ, t)is the longitudinal displacement of
the rod. It should be noted that since Bernoulli-Euler
Beam Theory and St. Venant Rod Theory are adopted in
the derivations, the girder and pier considered in the
present study need to be slender. Moreover, external
damping and contact damping are not included in the
model.

For the bridge shown in Figure 2, the two ends of the
girder are simply supported and the pier is fixed, the
boundary conditions are thus:

(3)

The continuity conditions of the beam in the middle
section are:

(4)

Strong vertical earthquake can lift up the bridge
girder, resulting in it being separated from the
bearing, but it will come back in contact with the
supporting bearing again due to the gravity load as
discussed above. This is a nonlinear process because
separation and contacting changes the structural
stiffness, which can be divided into two different
phases, the in-contact phase and out-of-contact phase.
In the present study, the in-contact phase and the out-
of-contact phase are modelled by two linear elastic
systems. Therefore the nonlinear pounding process is
described by piecewise linear elastic responses solved
in two systems. The change from one linear elastic
system to another one is defined by the in-contact
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Figure 2. Schematic view of a two-span continuous bridge



condition and the out-of-contact condition. In each
linear elastic system, the partial differential equation
of motion (Eqn 2) can be solved by the superposition
of linear harmonic motion.

For the in-contact case, the continuity conditions of
displacement and shear force between the beam and the
spring can be described as follows:

(5-a)

(5-b)

where δ is the compression displacement of linear
spring, and F is the bearing reaction force. For the out-
of-contact case, the girder and pier vibrate separately.
The contact force between the beam and the spring is
zero. There is no additional continuity condition
between the beam and the spring.

If uplifting occurs, pounding between girder and
bearing will take place when the beam comes back in
contact with the bearing again. Under strong vertical
excitations with sufficient duration, multiple uplifting
and pounding might occur, resulting in multiple
separation and contacting phases to take place
alternatively. The responses of bridges subjected to
strong vertical earthquakes can be modelled as:

1) Pre-separation phase: in this phase the beam is
supported by the bearing, beam and rod vibrate
together as a whole system;

2) Separation phase: the beam is uplifted, and the
beam and rod vibrate separately with their own
natural frequencies ωbn and ωrn; and

3) Pounding phase: during this phase, the beam is
in contact with the bearing again, and the
continuity conditions in Eqn 5 is satisfied.

The initial displacements and velocities at different
locations of the girder and pier in each of the three
phases can be expressed in an analytical form.
Particularly for the pre-separation phase, they are:
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where Fs is the initial contact force between the girder
and bearing, which can be expressed as:

(7)

Different from the pre-separation phase, the initial
conditions for the separation and contacting phases are
the values corresponding to the end of the previous
phase.

2.2. Solutions of Seismic Responses in the

Pounding Phase

Modelling the multiple poundings between girder and
bearing are not straightforward due to the existence of
pounding-induced waves. Poundings will generate
strong transient waves propagating in the beam and rod
even they are separated again. The flexural waves
travelling along the beam, and the longitudinal waves
travelling along the rod will interact with each other at
the contacting location during pounding and result in
complex dynamic responses. In this section, the
transient responses of bridge are solved by using the
expansion of transient wave functions in a series of
Eigenfunctions (i.e., wave modes) (Yin 1997; Yin and
Wang 1999; Yin and Yue 2002; Yin et al. 2007).The
fundamental form of the solutions contains two parts. In
the pounding phase, the beam deflection and rod
longitudinal displacement can be derived as

(8)
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The first part of the expression is the quasi-static
solution. The three quasi-static solutions satisfying
inhomogeneous boundary conditions as listed in Eqns 4
and 5 are:

(9)

The second part is the dynamic solution, which is
the summation of modal responses with respect to the
flexural wave modes φnb1 and φnb2 for the beam and
longitudinal wave modes φnr for the rod and the
corresponding time functions qn(t). The wave modes
are governed by the Eigenvalue problem with the
Eigenequations:

(10)
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where Dis the coefficient related to the 

beam flexural wave speed and F is the 

longitudinal wave speed in the rod. The flexural wave
modes φbn1 and φbn2, and longitudinal wave modes φrn

can be expressed as

(12)

where kbn, kbn, krn are the wave numbers, and An1, Bn1,
Cn1, Dn1, An2, Bn2, Cn2, Dn2, En, Fn are the coefficients of
the beam and rod wave modes. The flexural and
longitudinal wave modes satisfy the orthogonality
conditions, which can be derived easily from the
Eigenequations (Eqn 10) and the homogenous boundary
conditions (Eqn 11):

(13)

where δij is the Dirac function. Substituting wave mode
functions into Eqn 10 yields a set of linear algebraic
equations in a matrix form. The existence of non-trivial
solutions leads to the determinant of the coefficient
matrix being zero, which forms the beam-rod frequency
equation as follows:
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The coefficient of beam and rod wave modes can be
determined by substituting Eqn 12 into Eqn 13. Then the
beam and rod wave modes in Eqn 12 can be calculated.
The expression of the Eigenfunctions can be given as:

(15)

The construction of the quasi-static part and the
dynamic part makes the real boundary conditions be
satisfied completely, but the boundary conditions in Eqn
3 need to be satisfied by further construction of the time
functions qn (t). Substituting Eqn 6 into Eqn 1, and using
the orthogonality conditions in Eqn 12, the following
time differential equation can be obtained:
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t* = t − t2k is the time variable of the k-th pounding phase
(k = 0 is the first pounding phase), t2k is the initial time
of the k-th pounding phase.

Using the Laplace transform, qn (t) then can be
obtained as follows:

(17)

where ys (x, t−
2k) y

.
s (x, t−

2k) and us (ξ, t−
2k) u

.
s (ξ, t−

2k) are
the initial displacement and velocity distributions which
are the corresponding values at the end of the previous
phase as mentioned above. The initial time of every
pounding phase can be determined by the in-contact
condition:

(18)

2.3. Solutions of Seismic Responses in the

Separation Phase

In the separation phase, similar approaches to
calculate the wave modes, frequencies, the coefficient
of wave modes and time functions as in the pounding
phase can be applied. Similar to Eqn 8, the beam
deflection and rod longitudinal displacement can be
expressed as:

(19)
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The two quasi-static solutions are:

(20)

The beam and rod wave modes in the form of
Eigenfunctions are:

(21)

The time functions can be obtained as follows:

For the simply supported beam and fixed rod, the
frequencies are

(23)

Based on the orthogonality condition of wave mode
functions, the beam and rod frequencies Abm and Arm can
be calculated as:
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where t* = t − t2k+1 is the time variable of the k-th
separation phase (k = 1 is the first separation phase),
t2k+1 is the initial time of the k-th separation phase, and
ys (x, t−

2k+1) y
.
s (x, t−

2k+1) and us (ξ, t−
2k+1) and u.s (ξ, t−

2k+1)
are the initial displacement and velocity distributions
which again correspond to values at the end of previous
phase. The initial time of every separation phase is
determined by the out-of-contact condition:

(25)

The time functions, qbm (t*) and qrm (t*), and their
initial values, qbm (0) , qrm (0), q.bm (0) and q.rm (0), have
the same forms as those of qn (t*), qn (0) and q.n (0).
However, they have their own frequencies (ωbm and
ωrm), initial displacement, velocity distributions and
their own integral parts.

2.4. Solutions of the Multiple Pounding Force

During the pounding process, the pounding force F is
generated between the girder and the bearing. Generally
speaking, two kinds of techniques, the stereomechanical
approach and the contact element approach, are used to
model the pounding phenomena in bridge structures
under earthquake excitations. The pounding forces
obtained from these two models depend on the
coefficient of restitution and the damping coefficient,
but the selection of these coefficients is difficult since it
depends on many factors. In this study, a new theoretical
approach of determining the multiple vertical pounding
forces is presented based on the transient internal force
on the contact surface of the girder and bearing. 
In this new approach, there are two main steps to
calculate the pounding force. First, the transient 
responses in the pounding phase are solved as in Section
2.2. Then, the internal forces, i.e. the internal stress at
the pier end or the spring force are obtained and form
the solution of the transient responses. The pounding
force is calculated as follows:

(26)
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where σr is the internal stress at the pier end, and Γr is
contact area at the pier end.

It is believed that this new approach on determining
the pounding force has the following advantages. First,
the pounding contact model is not used, and the
coefficient of restitution and the damping coefficient are
therefore not needed. Second, the result of the pounding
force is more reliable since it is based the well-
established theories for the transient wave propagation
in the girder and the pier in Sections 2.2 and 2.3. Third,
the time discretization method is avoided which can
result in the divergence of pounding force in
calculations (Wang and Kim 1996).

The similar method has been used successfully in
solving the multiple-impact problems of two coaxial
hollow cylinders (Yin 1997; Yin and Wang 1999; Yin
and Yue 2002) and the repeated-impact problem
between a cantilever beam and a rod (Yin et al. 2007).

3. BRIDGE MODEL
A typical highway bridge in China is used as an example
in this section to illustrate the theoretical method
proposed in Section 2. The bridge is a two-span
continuous prestressed reinforced concrete box girder
bridge. The single pier is composed of two circular
concrete columns with longitudinal bars and spiral
hoops. Figure 3(a) shows the cross section of the bridge
at the centre of the pier, and Figure 3(b) shows the cross
section of each column and the reinforcement details in
the column. The corresponding parameters of the girder
and pier are given in Table 1.

To simplify the analysis, the equivalent
parameters of the bridge are used, which can be
calculated based on the code for the design of
highway reinforced concrete and prestressed
concrete bridges and culverts in China. Based on the
specifications, it can be calculated that the
equivalent Young’s modulus of the pier is Er =
(Ec Ac + Ey Ay) / (Ac + Ay) = 31.7 GPa, the equivalent
section area of pier Ar = Ac + (αy − 1) Ay = 3.228 m2,
where αy =Ey / Ec is the enhancement coefficients.
The equivalent section area of the girder is A = Ac +
(αy − 1) Ay + (αp − 1) Ap = 6.4 m2. The equivalent
moment of inertia of the girder is I = Ic + Iy + Ip =
3.684 m4. The the equivalent flexural stiffness of the
girder is EI = 0.95EcI = 1.21 × 1011 N˙m

2. The
circular plate rubber bearing with the type of
GYZ850 × 171 is placed between the girder and
pier. The rubber bearing with long-narrow shape
whose hysteresis curve can be considered to be a
linear elastic spring. The vertical stiffness of rubber
bearing is approximated as K = 2 × 109 N/m. The
total weight of bridge superstructure is 1948.34 tons

and the uniformly distributed loading is q =
256360.53 N/m.

4. VERTICAL EARTHQUAKE GROUND
MOTIONS

Ground motions from three typical near-fault
earthquakes as listed in Table 2 are selected as input in
the present study to demonstrate the vertical pounding
on bridge responses. Because ground displacement is
used as input in the above derived solutions, the
recorded ground displacement is expressed as the
superposition of a series of the harmonic components as
defined by Eqn 1. In the present study, the circular
frequency, the amplitude and phase angle of each
harmonic is determined from the Fourier transform of
the ground displacement time history. To well represent
the ground displacement time history, one hundred
frequency points are used. As shown in Figure 4, the
summation of 100 harmonics well represents the
recorded vertical earthquake ground displacement time
histories.
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5. NUMERICAL RESULTS
5.1. Effect of Vertical Earthquake Ground

Motion on Bridge Bearing

To investigate the effect of vertical earthquake ground
motion on bridge structures, responses of the bridge
model under the three recorded vertical ground
displacements are calculated using the above derived
analytical solutions. Figures 5, 6 and 7 show the time
history of the reaction force on the bearing, the vertical
displacement time histories at the middle of the girder
(point O in Figure 2) and at the pier top (point C in
Figure 2) under Kobe earthquake, Northridge
earthquake and Imperial Valley earthquake,
respectively.

As show in Figure 5, no vertical pounding occurs
when this bridge is subjected to the Kobe earthquake.
This is because, as shown in Figure 5(b), displacement
at point O is always less than that at the pier top,
implying the girder is always in contact with the
bearing throughout the entire earthquake duration. The
reaction force provided by the bearing is not constant
because of the vertical earthquake loading. As shown in
Figure 5(a), the maximum and minimum of the reaction
forces are 15.78 MN and 7.35 MN, respectively.

Figure 6 shows that when the bridge is subjected to
the Northridge earthquake, the displacement at the pier
top becomes smaller than that at the middle of the girder
at 6.26 sec, indicating separation of the girder from 
the bearing occurs, and therefore the axial force in the
bearing is zero. The first separation phase starts to take
place and bridge girder and pier vibrates independently
before they are in contact again. The bridge girder will
be in contact again with the bearing and induce a
relatively large impact force on bearing as shown in
Figure 6(a). As shown in Figure 6, the separation and
impacting process repeats several times after 6.26 sec,
indicating multiple vertical poundings take place. It also
can be seen that the maximum reaction force acted on
the bearing is 64.5 MN, which is about three times of the
axial force of about 20 MN in the bearing if there is no
vertical pounding, indicating quite severe vertical
pounding effect. The maximum up throwing of the
middle of the girder, i.e., the largest separation between
the girder and bearing is 70.9 mm, occurring at about
7.5 sec.

When the bridge is subjected to Imperial Valley
earthquake, only single separation and thus one
pounding takes place as shown in Figure 7. The
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Table 1. The parameters of the girder and pier

Parameter of bridge girder Parameter of bridge pier

Length of span x0 = 38 m Height of pier L = 5.2 m
Mass density ρ = 2600 kg/m3 Mass density ρ = 2600 kg/m3

Cross-section area Ac = 6.06 m2 Cross-section area Ac = 3.0772 m2

Young’s modulus of concrete Ec = 34.5 GPa Young’s modulus of Ec =30.0 GPa
concrete

Inertia moment of girder cross Ic = 3.409 m4 Reinforcement cross Ay = 0.0157 m2

section section area
Reinforcement cross section area Ay = 0.04712 m2 Young’s modulus of Ey = 200 GPa

reinforcement
Young’s modulus of reinforcement Ey = 200 GPa
Inertia moment of reinforcement Iy = 0.1925 m4

cross section
Prestressed steel strand section area Ap = 0.02688 m2

Young’s modulus of prestressed Ep = 195 GPa
steel strand
Inertia moment of prestressed steel Ip = 0.07585 m4

strand cross section

Table 2. Basic information of selected vertical ground motions

Number Earthquake Year Station MW Distance PGA PGV PGD

(km) (g) (cm/s) (cm)

1 Kobe, Japan 1995 Takarazuka 6.9 1.2 0.433 34.8 12.38
2 Northridge 1994 Tarzana-Cedar Hill A 6.7 4.1 1.048 75.4 20.05
3 Imperial Valley 1979 EI Centro Array #8 6.5 1.0 1.655 57.5 26.41



separation occurs at 2.29 sec, and at 2.31 sec, the girder
falls back on the rubber bearing, inducing a relatively
large pounding force of 23.6 MN in the bearing.

It should be noted that the PGA and peak ground
displacement (PGD) of the Imperial Valley earthquake
is much larger than those of the Northridge earthquake
as shown in Table 1 and Figure 4. However,
Northridge earthquake induces multiple vertical
poundings while the larger amplitude Imperial Valley
earthquake causes only a single vertical pounding.
This is because the frequency of the vertical impulse
from the Imperial Valley earthquake is higher and the
ground displacement quickly changes direction, as
compared to that of the Northridge earthquake, as
shown in Figure 4. The large impulse in the vertical
ground displacement of the Northridge earthquake
lasts almost 2.0 sec, therefore resulting in multiple
vertical poundings. These numerical results indicate
that the vertical structural response not only depends
on the ground motion amplitude, but also on ground

motion frequency and duration, as well as structural
characteristics. The most server earthquake not

Advances in Structural Engineering Vol. 18 No. 4 2015 463

Haibo Yang, Xiaochun Yin, Hong Hao and Kaiming Bi

Recorded earthquake

Simulated earthquake

Recorded earthquake

Simulated earthquake

Recorded earthquake

Simulated earthquake

0.12

(a)

0.08

0.04

0.00

0 2 4 6

Time (s)

8 10

D
is

pl
ac

em
en

t (
m

)

−0.04

0.2

(b)

0.1

0.0

−0.1

0 2 4 6

Time (s)

8 10

D
is

pl
ac

em
en

t (
m

)

−0.2

0.2

0.3

(c)

0.1

0.0

−0.1

0 2 4 6

Time (s)

8 10

D
is

pl
ac

em
en

t (
m

)

Figure 4. Simulated and recorded vertical earthquake ground

displacement time histories: (a) Kobe earthquake; (b) Northridge

earthquake; and (c) Imperial Valley earthquake

16
(a)

14

12

10

0 2 4 6

Girder Pier

Time (s)

8 10

B
ea

rin
g 

fo
rc

e 
(M

N
)

8

0.12
(b)

0.08

0.04

0.00

0 2 4 6

Time (s)

8 10

D
is

pl
ac

em
en

t (
m

)

−0.04

Figure 5. Seismic response time histories of the bridge model to

Kobe earthquake: (a) bearing force; and (b) vertical displacement

of the girder above the bearing and pier top

60

(a)

40

20

0 2 4 6

Girder Pier

Time (s)

8 10

B
ea

rin
g 

fo
rc

e 
(M

N
)

0

0.3
(b)

0.2

0.1

0.0

0 2 4 6

Time (s)

8 10

D
is

pl
ac

em
en

t (
m

)

−0.1

Figure 6. Seismic response time histories of the bridge model to

Northridge earthquake: (a) bearing force; and (b) vertical

displacement of the girder above the bearing and the pier top



necessarily results in the most serious damage to
engineering structures.

The above numerical results demonstrate that under
strong vertical ground excitations, bridge girder might
separate from the supporting bearing and vertical
poundings may take place. Although the girder only
separates from the bearing in a very short period with
small a gap, the pounding force it generates could be
rather large when the girder falls back in contact again
with the bearing. The above numerical results show that
the axial force in the bearing due to pounding is about
three times larger than that without pounding. Such a
large impact force can lead to the fracture of bearing and
local damage of bridge girder and pier. For example,
Tanimura et al. (2002) identified that the vertical
poundings between the girder and the bearing lead to the
fracture of the bearing in Nielsen Bridge. Vertical
pounding damages to piers of a few bridges were also
observed in the 2011 Christchurch earthquake,
including the Durham Street Bridge and ANZAC Drive
Bridge (Chouw and Hao 2012). Therefore it is important
to take vertical ground vibration into consideration in
bridge structural response analysis.

5.2. Effect of Vertical Earthquake Ground

Motion on the Bridge Girder

To investigate the effect of vertical earthquake ground

motion on the bridge girder, the responses of the girder
to the above three vertical earthquake ground motions
are calculated. Figures 8, 9 and 10 show the response
time histories of the bending moment at mid-span and at
the bearing support location (Point O in Figure 2) under
Kobe earthquake, Northridge earthquake and Imperial
Valley earthquake, respectively.

As shown in Figure 5, when the bridge is under Kobe
earthquake, no vertical pounding takes place. Therefore
the bending moment response is rather steady and
follows the amplitude of ground vibration, as shown in
Figure 8. The maximum of bending moment is 32.4
MN.m. Similar observations can also be made for the
negative bending moment as shown in Figure 8(b).
When the bridge is subjected to the Northridge
earthquake, multiple poundings take place as discussed
above. The vertical poundings also affect the bending
moments in the girder as shown in Figure 9. As shown
the amplitude of the positive bending moment at the mid
span quickly increases after 6.26 sec owing to vertical
poundings. The maximum positive moment reaches
109.7 MN.m, which is substantially higher than the
bending moment before pounding occurs. Similar
observations can also be made on the negative moment
response as shown in Figure 9(b). The maximum
negative moment is 158.6 MN.m. When the bridge is
subjected to the Imperial Valley earthquake, only one
pounding takes place. The pounding also causes a
sudden increase in the bending moments. The maximum
positive and negative bending moments are 48.04 and
88.5 MN.m respectively.

To further investigate the influences of vertical
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pounding on bending moment responses of the bridge
girder, Figure 11 shows the bending moment of bridge
girder at different time instants near the separation and
pounding occurrence. The horizontal axis x− = x/x0 is the
normalized distance measured from the point directly
above the bearing. The girder is separated from the
bearing in the period of 2.29 sec to 2.31 sec, and the
maximum pounding force appears at 2.42 sec as shown
in Figure 7. Figure 11 shows that pounding results in a
sharp increase in the bending moment response in the
girder (comparing those at the time instant 2.31 sec, to

2.35 sec and 2.42 sec). The bending moments at mid-
span change from −13.8 MN.m to 49.97 MN.m and
those at bearing support location change from −87.5
MN.m to 14.42 MN.m. These observation indicate that
when pounding occurs, the bending moments in the
bridge girder may fluctuate suddenly, and the the initial
positive moment at mid-span may become negative and
the initial negative moment at bearing support location
may become positive. This sudden fluctuation may
cause serious damage to the bridge girder. Since most
bridge girders are designed to resist positive bending
moment at the mid-span and negative bending moment
above the pier due to gravity load, and the reinforcement
bars are placed accordingly, vertical pounding induced
bending moments might lead to damages to the bridge
girder if they are not properly accounted for in the
design and analysis.

5.3. Effect of Vertical Earthquake Ground

Motion on the Bridge Pier

To investigate the effect of vertical earthquake ground
motion on the pier response, axial responses of the
bridge pier is also calculated. Figure 12 shows the time
histories of the axial stress at the bottom of the pier
under Kobe earthquake, Northridge earthquake and
Imperial Valley earthquake, respectively.

Similar to the bending moments in Section 5.2, under
Kobe earthquake the variations of the axial stress is
relatively low as shown in Figure 12(a), and only the
compressive stress develops in the pier because this
earthquake ground motion does not induce vertical
pounding. However, when pounding occurs, large axial
stress could be generated in the pier owing to the
vertical pounding force. It is interesting to note that
tensile axial stress may also develop in the pier as shown
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in Figures 12(b) and (c). This is because lifting up of the
girder from the bearing results in zero compressive force
acting on the pier besides the pier self-weight.
Reflection of the stress wave at the bottom of the pier, if
larger than the compressive stress due to self-weight,
therefore generates tensile stress. As shown in Figure
12(c), wave reflection may generate tensile stress at the
bottom of the pier even the bridge girder does not
completely separate from the bearing but the vertical
vibration results in the compressive stress from the
bridge girder on the pier relatively small. To examine in
more detail the axial stress fluctuations and the tensile
stress induced by vertical earthquake and pounding,
responses of the pier to the Imperial Valley earthquake
is taken as the example again. Figure 13 shows the axial
stress of the pier at different time instants close to the
instants when separation and pounding occur. The

horizontal axis ξ− = ξ /L is the normalized pier height. As
shown in Figure 13, at t = 2.29 sec when the girder
begins to separate from the bearing, most positions
along the pier are in compression owing to the combined
actions of pier self-weight and stress wave inside the
pier generated from the vertical vibrations, except at the
top portion of the pier, where the stress is almost zero.
At 2.295 sec, some positions begin to experience tensile
stress and the tensile zone and compression zone
oscillates owing to stress wave propagation along the
pier. At 2.3 and 2.305 sec, the whole pier is in tension,
and the maximum tensile stress can reach 2.4 MPa as
shown in Figure 13. This tensile stress may result in the
annular cracks on concrete bridge pier as observed in
many previous major earthquakes. At 2.31 sec, the
girder drops back to the bearing again, the upper part of
the pier becomes in compression again, but the lower
part is still in tension. At 2.35 sec, the whole pier
becomes to be in compression again. At 2.41 sec, the
axial stress rapidly increases to 8 MPa. Under
Northridge earthquake the maximum of compressive
stress is more than 20 MPa because of vertical
pounding, about four times larger than the compressive
stress in the pier from the static vertical loads, implying
the vertical poundings may induce crushing failure of
concrete pier or buckling failure of steel pier if they are
large enough, such failure modes of bridge pier have in
fact been observed in previous earthquakes.

6. CONCLUSIONS
This paper derives the theoretical solutions of the
vertical pounding responses between bridge girder and
supporting bearing of a continuous bridge structure
subjected to strong near-fault vertical earthquake
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ground excitations, and investigates the influences of
vertical poundings on bridge structure responses. The
bridge is simplified as a continuous beam with pin
supports at the two abutments, and a compression-only
spring connecting the beam and the bridge pier. The
separation of the bridge girder from the bearing due to
strong vertical excitation and its pounding on the
bearing after it is in contact again with the bearing are
modelled. By using the expansion of transient wave
functions as a series of Eigenfunctions, the theoretical
solutions of the seismic responses of the bridge with
vertical separation and pounding at the bearing-girder
connection under near-fault vertical ground excitation
are derived. The effects of vertical earthquake ground
excitation and vertical pounding on bridge bearing,
girder and pier are then investigated. Following
conclusions are obtained based on the numerical results:

1. Vertical pounding between the bridge girder and
the supporting bearing may take place when the
bridge structure is subjected to severe near-fault
earthquake. The occurrence of separation and
pounding between the bridge girder and bearing
depends not only on the vertical ground motion
amplitude, but also on its frequency, duration
and the structure characteristics.

2. Under strong vertical ground excitations,
separation of girder from bearing and hence
pounding on the bearing by the girder is
possible. Such vertical pounding generates a
large impact force on the bearing, and may lead
to the fracture of bearing and local damage to
the bridge pier.

3. The vertical poundings between the bridge
girder and the bearing may result in large
bending moments in the bridge girder, and these
bending moments are in the opposite direction
of those from static and traffic loading, and
therefore are not necessarily appropriately
accounted for since vertical pounding is not
considered in normal bridge designs.

4. The vertical pounding may also increase the
compressive axial stress in the bridge pier and
cause tensile axial stress owing to stress wave
reflection. The excessive compressive and
tensile axial stress may cause
crushing/buckling damage or lead to annular
cracks in the pier.
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