1,234 research outputs found

    Warping and F-term uplifting

    Get PDF
    We analyse the effective supergravity model of a warped compactification with matter on D3 and D7-branes. We find that the main effect of the warp factor is to modify the F-terms while leaving the D-terms invariant. Hence warped models with moduli stabilisation and a small positive cosmological constant resulting from a large warping can only be achieved with an almost vanishing D-term and a F-term uplifting. By studying string-motivated examples with gaugino condensation on magnetised D7-branes, we find that even with a vanishing D-term, it is difficult to achieve a Minkowski minimum for reasonable parameter choices. When coupled to an ISS sector the AdS vacua is uplifted, resulting in a small gravitino mass for a warp factor of order 10^-5.Comment: 24 pages, v3: typos, minor clarifications adde

    Notes on Properties of Holographic Matter

    Full text link
    Probe branes with finite worldvolume electric flux in the background created by a stack of Dp branes describe holographically strongly interacting fundamental matter at finite density. We identify two quantities whose leading low temperature behavior is independent of the dimensionality of the probe branes: specific heat and DC conductivity. This behavior can be inferred from the dynamics of the fundamental strings which provide a good description of the probe branes in the regime of low temperatures and finite densities. We also comment on the speed of sound on the branes and the temperature dependence of DC conductivity at vanishing charge density.Comment: 18 pages, 2 figures; v2: corrected error in Section 6, conclusions unchanged; v3: improved figures and added clarifying comment

    Decoupling Dark Energy from Matter

    Get PDF
    We examine the embedding of dark energy in high energy models based upon supergravity and extend the usual phenomenological setting comprising an observable sector and a hidden supersymmetry breaking sector by including a third sector leading to the acceleration of the expansion of the universe. We find that gravitational constraints on the non-existence of a fifth force naturally imply that the dark energy sector must possess an approximate shift symmetry. When exact, the shift symmetry provides an example of a dark energy sector with a runaway potential and a nearly massless dark energy field whose coupling to matter is very weak, contrary to the usual lore that dark energy fields must couple strongly to matter and lead to gravitational inconsistencies. Moreover, the shape of the potential is stable under one-loop radiative corrections. When the shift symmetry is slightly broken by higher order terms in the Kähler potential, the coupling to matter remains small. However, the cosmological dynamics are largely affected by the shift symmetry breaking operators leading to the appearance of a minimum of the scalar potential such that dark energy behaves like an effective cosmological constant from very early on in the history of the universe

    Long Strings, Anomaly Cancellation, Phase Transitions, T-duality and Locality in the 2d Heterotic String

    Full text link
    We study the noncritical two-dimensional heterotic string. Long fundamental strings play a crucial role in the dynamics. They cancel anomalies and lead to phase transitions when the system is compactified on a Euclidean circle. A careful analysis of the gauge symmetries of the system uncovers new subtleties leading to modifications of the worldsheet results. The compactification on a Euclidean thermal circle is particularly interesting. It leads us to an incompatibility between T-duality (and its corresponding gauge symmetry) and locality.Comment: 36 pages, 2 figure

    Solar Fluctuations and the MSW Effect

    Full text link
    This talk summarizes the results of recent calculations of how fluctuations within the solar medium can influence resonant neutrino oscillations within the sun. Although initial calculations pointed to helioseismic waves as possibly producing detectable effects, recent more careful calculations show this not to be true. Those features of fluctuations which maximize their influence on neutrino propagation are identified, and are likely to have implications for supernovae and the early universe.Comment: 10 pages, LaTeX, talk given at the Erice School on Neutrinos in Astro, Particle and Nuclear Physic

    Finite temperature behaviour of the ISS-uplifted KKLT model

    Get PDF
    We study the static phase structure of the ISS-KKLT model for moduli stabilisation and uplifting to a zero cosmological constant. Since the supersymmetry breaking sector and the moduli sector are only gravitationally coupled, we expect negligible quantum effects of the modulus upon the ISS sector, and the other way around. Under this assumption, we show that the ISS fields end up in the metastable vacua. The reason is not only that it is thermally favoured (second order phase transition) compared to the phase transition towards the supersymmetric vacua, but rather that the metastable vacua form before the supersymmetric ones. This nice feature is exclusively due to the presence of the KKLT sector. We also show that supergravity effects are negligible around the origin of the field space. Finally, we turn to the modulus sector and show that there is no destabilisation effect coming from the ISS sector.Comment: 23 pages, 3 figures, mistake corrected, one plot updated, physical conclusions unchange

    The association between dry needling-induced twitch response and change in pain and muscle function in patients with low back pain: a quasi-experimental study

    Get PDF
    Objective To investigate the relationship between dry needling-induced twitch response and change in pain, disability, nociceptive sensitivity, and lumbar multifidus muscle function, in patients with low back pain (LBP). Design Quasi-experimental study. Setting Department of Defense Academic Institution. Participants Sixty-six patients with mechanical LBP (38 men, 28 women, age: 41.3 [9.2] years). Interventions Dry needling treatment to the lumbar multifidus muscles between L3 and L5 bilaterally. Main outcome measures Examination procedures included numeric pain rating, the Modified Oswestry Disability Index, pressure algometry, and real-time ultrasound imaging assessment of lumbar multifidus muscle function before and after dry needling treatment. Pain pressure threshold (PPT) was used to measure nocioceptive sensitivity. The percent change in muscle thickness from rest to contraction was calculated to represent muscle function. Participants were dichotomized and compared based on whether or not they experienced at least one twitch response on the most painful side and spinal level during dry needling. Results Participants experiencing local twitch response during dry needling exhibited greater immediate improvement in lumbar multifidus muscle function than participants who did not experience a twitch (thickness change with twitch: 12.4 [6]%, thickness change without twitch: 5.7 [11]%, mean difference adjusted for baseline value, 95%CI: 4.4 [1 to 8]%). However, this difference was not present after 1-week, and there were no between-groups differences in disability, pain intensity, or nociceptive sensitivity. Conclusions The twitch response during dry needling might be clinically relevant, but should not be considered necessary for successful treatment

    Holographic Thermodynamics at Finite Baryon Density: Some Exact Results

    Full text link
    We use the AdS/CFT correspondence to study the thermodynamics of massive N=2 supersymmetric hypermultiplets coupled to N=4 supersymmetric SU(Nc) Yang-Mills theory in the limits of large Nc and large 't Hooft coupling. In particular, we study the theory at finite baryon number density. At zero temperature, we present an exact expression for the hypermultiplets' leading-order contribution to the free energy, and in the supergravity description we clarify which D-brane configuration is appropriate for any given value of the chemical potential. We find a second-order phase transition when the chemical potential equals the mass. At finite temperature, we present an exact expression for the hypermultiplets' leading-order contribution to the free energy at zero mass.Comment: 21 pages, 1 figure; v2 corrected typos, added comments to sections 2.2 and 2.
    corecore