12 research outputs found

    Exponential Metric Fields

    Full text link
    The Laser Interferometer Space Antenna (LISA) mission will use advanced technologies to achieve its science goals: the direct detection of gravitational waves, the observation of signals from compact (small and dense) stars as they spiral into black holes, the study of the role of massive black holes in galaxy evolution, the search for gravitational wave emission from the early Universe. The gravitational red-shift, the advance of the perihelion of Mercury, deflection of light and the time delay of radar signals are the classical tests in the first order of General Relativity (GR). However, LISA can possibly test Einstein's theories in the second order and perhaps, it will show some particular feature of non-linearity of gravitational interaction. In the present work we are seeking a method to construct theoretical templates that limit in the first order the tensorial structure of some metric fields, thus the non-linear terms are given by exponential functions of gravitational strength. The Newtonian limit obtained here, in the first order, is equivalent to GR.Comment: Accepted for publication in Astrophysics and Space Science, 17 page

    Irrelevance of photon events distinguishability in a class of Bell experiments

    Get PDF
    We show that the possibility of distinguishing between single- and two-photon detection events, usually not met in the actual experiments, is not a necessary requirement for proof that the experiments of Alley and Shih [Phys. Rev. Lett. 61, 2921 (1988)] and Ou and Mandel [Phys. Rev. Lett. 61, 50 (1988)] are modulo a fair sampling assumption, valid tests of local realism. We also give the critical parameters for the experiments to be unconditional tests of local realism, and show that some other interesting phenomena (involving bosonic-type particle indistinguishability) can be observed during such tests

    Interferometric Bell-state preparation using femtosecond-pulse-pumped Spontaneous Parametric Down-Conversion

    Full text link
    We present theoretical and experimental study of preparing maximally entangled two-photon polarization states, or Bell states, using femtosecond pulse pumped spontaneous parametric down-conversion (SPDC). First, we show how the inherent distinguishability in femtosecond pulse pumped type-II SPDC can be removed by using an interferometric technique without spectral and amplitude post-selection. We then analyze the recently introduced Bell state preparation scheme using type-I SPDC. Theoretically, both methods offer the same results, however, type-I SPDC provides experimentally superior methods of preparing Bell states in femtosecond pulse pumped SPDC. Such a pulsed source of highly entangled photon pairs is useful in quantum communications, quantum cryptography, quantum teleportation, etc.Comment: 11 pages, two-column format, to appear in PR

    ULTRA-ACCURATE INTERNATIONAL TIME AND FREQUENCY COMPARISON VIA AN ORBITING HYDROGEN-MASER CLOCK

    No full text
    Hydrogen maser clocks have exhibited fractional frequency stabilities of better than 1 x 10-15 for averaging times as large as 20,000 seconds [1]. This represents an rms time deviation of about 20 ps for ÂĽ day prediction times [2]. S-band Doppler cancellation frequency comparison techniques have been developed with phase stabilities of a few picoseconds [2,3]. Laser ranging systems have been developed with accuracies of a few cm [4]. Combining the virtues of these developments and choosing a satellite with an appropriate orbit would allow worldwide time comparisons at the subnanosecond level, and frequency comparison uncertainties of the order of 1 x 10-16. Such a capability would open up new horizons to the frequency standards laboratories, to the VLBI community, to the Deep Space Tracking Network, and to fundamental time and frequency (T/F) metrology on a worldwide basis, as well as greatly assisting the BIH in the generation of UTC and TAI

    Appendix

    No full text
    corecore