10 research outputs found

    Parametrized Post-Newtonian Orbital Effects in Extrasolar Planets

    Get PDF
    Perturbative Post-Newtonian variations of the standard osculating orbital elements are obtained by using the two-body equations of motion in the Parameterized Post-Newtonian theoretical framework. The results obtained are applied to the Einstein and. Brans - Dicke theories. As a results, the semi-major axis and eccentricity exhibit periodic variation, but no secular changes.. The longitude of periastron and mean longitude at epoch experience both secular and periodic shifts. The Post-Newtonian effects are calculated and discussed for six extrasolar planets.Comment: Accepted for publication in Astrophys. Space Sc

    Supplementary Material for: Factors Influencing Decision-Making for or against Adjuvant and Neoadjuvant Chemotherapy in Postmenopausal Hormone Receptor-Positive Breast Cancer Patients in the EvAluate-TM Study

    No full text
    <i>Background:</i> Decision-making for or against neoadjuvant or adjuvant chemotherapy in postmenopausal patients with hormone receptor-positive breast cancer does not follow any clear guidelines, and some patients may unnecessarily undergo chemotherapy and be exposed to the associated toxicity. The aim of this study was to identify the patient population for whom this issue may bear relevance. <i>Methods:</i>Patients being treated with letrozole in the prospective multicenter noninterventional EvAluate-TM study were recruited. The percentage of patients receiving chemotherapy and factors associated with chemotherapy administration were identified. <i>Results:</i> In all, 3,924 (37.4%) patients received chemotherapy before treatment with letrozole. Of these, 293 (20%) underwent neoadjuvant therapy. Younger age was predictive for both adjuvant and neoadjuvant therapy. Overall, decisions in favor of administering chemotherapy are more likely to be made in patients with a higher body mass index (BMI), and neoadjuvant chemotherapy is administered at a higher rate in women with a lower BMI. Concomitant medication influenced the overall decision-making regarding chemotherapy, irrespective of whether it was given on a neoadjuvant or adjuvant basis. <i>Conclusion:</i> There is an ongoing debate as to whether all of the many patients who receive chemotherapy actually benefit from it. Neoadjuvant chemotherapy is frequently administered in this patient population, and this should encourage further research to resolve current clinical and research issues

    Accurate rotational constants for linear interstellar carbon chains: achieving experimental accuracy

    No full text

    Ultrafast optical spectroscopy of strongly correlated materials and high-temperature superconductors: a non-equilibrium approach

    Get PDF
    In the last two decades non-equilibrium spectroscopies have evolved from avant-garde studies to crucial tools for expanding our understanding of the physics of strongly correlated materials. The possibility of obtaining simultaneously spectroscopic and temporal information has led to insights that are complementary to (and in several cases beyond) those attainable by studying the matter at equilibrium. From this perspective, multiple phase transitions and new orders arising from competing interactions are benchmark examples where the interplay among electrons, lattice and spin dynamics can be disentangled because of the different timescales that characterize the recovery of the initial ground state. For example, the nature of the broken-symmetry phases and of the bosonic excitations that mediate the electronic interactions, eventually leading to superconductivity or other exotic states, can be revealed by observing the sub-picosecond dynamics of impulsively excited states. Furthermore, recent experimental and theoretical developments have made it possible to monitor the time-evolution of both the single-particle and collective excitations under extreme conditions, such as those arising from strong and selective photo-stimulation. These developments are opening the way for new, non-equilibrium phenomena that can eventually be induced and manipulated by short laser pulses. Here, we review the most recent achievements in the experimental and theoretical studies of the non-equilibrium electronic, optical, structural and magnetic properties of correlated materials. The focus will be mainly on the prototypical case of correlated oxides that exhibit unconventional superconductivity or other exotic phases. The discussion will also extend to other topical systems, such as iron-based and organic superconductors, (Formula presented.) and charge-transfer insulators. With this review, the dramatically growing demand for novel experimental tools and theoretical methods, models and concepts, will clearly emerge. In particular, the necessity of extending the actual experimental capabilities and the numerical and analytic tools to microscopically treat the non-equilibrium phenomena beyond the simple phenomenological approaches represents one of the most challenging new frontiers in physics

    Robert Dicke and the naissance of experimental gravity physics, 1957–1967

    No full text
    corecore