78 research outputs found
Oriented Percolation in One-Dimensional 1/|x-y|^2 Percolation Models
We consider independent edge percolation models on Z, with edge occupation
probabilities p_ = p if |x-y| = 1, 1 - exp{- beta / |x-y|^2} otherwise. We
prove that oriented percolation occurs when beta > 1 provided p is chosen
sufficiently close to 1, answering a question posed in [Commun. Math. Phys.
104, 547 (1986)]. The proof is based on multi-scale analysis.Comment: 19 pages, 2 figures. See also Commentary on J. Stat. Phys. 150,
804-805 (2013), DOI 10.1007/s10955-013-0702-
Dynamic Critical Behavior of the Chayes-Machta Algorithm for the Random-Cluster Model. I. Two Dimensions
We study, via Monte Carlo simulation, the dynamic critical behavior of the
Chayes-Machta dynamics for the Fortuin-Kasteleyn random-cluster model, which
generalizes the Swendsen-Wang dynamics for the q-state Potts ferromagnet to
non-integer q \ge 1. We consider spatial dimension d=2 and 1.25 \le q \le 4 in
steps of 0.25, on lattices up to 1024^2, and obtain estimates for the dynamic
critical exponent z_{CM}. We present evidence that when 1 \le q \lesssim 1.95
the Ossola-Sokal conjecture z_{CM} \ge \beta/\nu is violated, though we also
present plausible fits compatible with this conjecture. We show that the
Li-Sokal bound z_{CM} \ge \alpha/\nu is close to being sharp over the entire
range 1 \le q \le 4, but is probably non-sharp by a power. As a byproduct of
our work, we also obtain evidence concerning the corrections to scaling in
static observables.Comment: LaTeX2e, 75 pages including 26 Postscript figure
Stretched exponential relaxation for growing interfaces in quenched disordered media
We study the relaxation for growing interfaces in quenched disordered media.
We use a directed percolation depinning model introduced by Tang and Leschhorn
for 1+1-dimensions. We define the two-time autocorrelation function of the
interface height C(t',t) and its Fourier transform. These functions depend on
the difference of times t-t' for long enough times, this is the steady-state
regime. We find a two-step relaxation decay in this regime. The long time tail
can be fitted by a stretched exponential relaxation function. The relaxation
time is proportional to the characteristic distance of the clusters of pinning
cells in the direction parallel to the interface and it diverges as a power
law. The two-step relaxation is lost at a given wave length of the Fourier
transform, which is proportional to the characteristic distance of the clusters
of pinning cells in the direction perpendicular to the interface. The stretched
exponential relaxation is caused by the existence of clusters of pinning cells
and it is a direct consequence of the quenched noise.Comment: 4 pages and 5 figures. Submitted (5/2002) to Phys. Rev.
Phase coexistence of gradient Gibbs states
We consider the (scalar) gradient fields --with denoting
the nearest-neighbor edges in --that are distributed according to the
Gibbs measure proportional to \texte^{-\beta H(\eta)}\nu(\textd\eta). Here
is the Hamiltonian, is a symmetric potential,
is the inverse temperature, and is the Lebesgue measure on the linear
space defined by imposing the loop condition
for each plaquette
in . For convex , Funaki and Spohn have shown that
ergodic infinite-volume Gibbs measures are characterized by their tilt. We
describe a mechanism by which the gradient Gibbs measures with non-convex
undergo a structural, order-disorder phase transition at some intermediate
value of inverse temperature . At the transition point, there are at
least two distinct gradient measures with zero tilt, i.e., .Comment: 3 figs, PTRF style files include
Unsigned state models for the Jones polynomial
It is well a known and fundamental result that the Jones polynomial can be
expressed as Potts and vertex partition functions of signed plane graphs. Here
we consider constructions of the Jones polynomial as state models of unsigned
graphs and show that the Jones polynomial of any link can be expressed as a
vertex model of an unsigned embedded graph.
In the process of deriving this result, we show that for every diagram of a
link in the 3-sphere there exists a diagram of an alternating link in a
thickened surface (and an alternating virtual link) with the same Kauffman
bracket. We also recover two recent results in the literature relating the
Jones and Bollobas-Riordan polynomials and show they arise from two different
interpretations of the same embedded graph.Comment: Minor corrections. To appear in Annals of Combinatoric
Phase transitions with four-spin interactions
Using an extended Lee-Yang theorem and GKS correlation inequalities, we
prove, for a class of ferromagnetic multi-spin interactions, that they will
have a phase transition(and spontaneous magnetization) if, and only if, the
external field (and the temperature is low enough). We also show the
absence of phase transitions for some nonferromagnetic interactions. The FKG
inequalities are shown to hold for a larger class of multi-spin interactions
The Percolation Signature of the Spin Glass Transition
Magnetic ordering at low temperature for Ising ferromagnets manifests itself
within the associated Fortuin-Kasteleyn (FK) random cluster representation as
the occurrence of a single positive density percolating network. In this paper
we investigate the percolation signature for Ising spin glass ordering -- both
in short-range (EA) and infinite-range (SK) models -- within a two-replica FK
representation and also within the different Chayes-Machta-Redner two-replica
graphical representation. Based on numerical studies of the EA model in
three dimensions and on rigorous results for the SK model, we conclude that the
spin glass transition corresponds to the appearance of {\it two} percolating
clusters of {\it unequal} densities.Comment: 13 pages, 6 figure
Testing fixed points in the 2D O(3) non-linear sigma model
Using high statistic numerical results we investigate the properties of the
O(3) non-linear 2D sigma-model. Our main concern is the detection of an
hypothetical Kosterlitz-Thouless-like (KT) phase transition which would
contradict the asymptotic freedom scenario. Our results do not support such a
KT-like phase transition.Comment: Latex, 7 pgs, 4 eps-figures. Added more analysis on the
KT-transition. 4-loop beta function contains corrections from D.-S.Shin
(hep-lat/9810025). In a note-added we comment on the consequences of these
corrections on our previous reference [16
The Thermodynamics of Quarks and Gluons
This is an introduction to the study of strongly interacting matter. We
survey its different possible states and discuss the transition from hadronic
matter to a plasma of deconfined quarks and gluons. Following this, we
summarize the results provided by lattice QCD finite temperature and density,
and then investigate the nature of the deconfinement transition. Finally we
give a schematic overview of possible ways to study the properties of the
quark-gluon plasma.Comment: 19 pages, 21 figures; lecture given at the QGP Winter School,
Jaipur/India, Feb.1-3, 2008; to appear in Springer Lecture Notes in Physic
Exact Potts Model Partition Functions for Strips of the Honeycomb Lattice
We present exact calculations of the Potts model partition function
for arbitrary and temperature-like variable on -vertex
strip graphs of the honeycomb lattice for a variety of transverse widths
equal to vertices and for arbitrarily great length, with free
longitudinal boundary conditions and free and periodic transverse boundary
conditions. These partition functions have the form
, where
denotes the number of repeated subgraphs in the longitudinal direction. We give
general formulas for for arbitrary . We also present plots of
zeros of the partition function in the plane for various values of and
in the plane for various values of . Explicit results for partition
functions are given in the text for (free) and (cylindrical),
and plots of partition function zeros are given for up to 5 (free) and
(cylindrical). Plots of the internal energy and specific heat per site
for infinite-length strips are also presented.Comment: 39 pages, 34 eps figures, 3 sty file
- …
