11 research outputs found

    The WEBT BL Lacertae Campaign 2001 and its extension : Optical light curves and colour analysis 1994–2002

    Get PDF
    BL Lacertae has been the target of four observing campaigns by the Whole Earth Blazar Telescope (WEBT) collaboration. In this paper we present UBVRI light curves obtained by theWEBT from 1994 to 2002, including the last, extended BL Lac 2001 campaign. A total of about 7500 optical observations performed by 31 telescopes from Japan to Mexico have been collected, to be added to the ∼15 600 observations of the BL Lac Campaign 2000. All these data allow one to follow the source optical emission behaviour with unprecedented detail. The analysis of the colour indices reveals that the flux variability can be interpreted in terms of two components: longer-term variations occurring on a fewday time scale appear as mildly-chromatic events, while a strong bluer-when-brighter chromatism characterizes very fast (intraday) flares. By decoupling the two components, we quantify the degree of chromatism inferring that longer-term flux changes imply moving along a ∼0.1 bluerwhen- brighter slope in the B − R versus R plane; a steeper slope of ∼0.4 would distinguish the shorter-term variations. This means that, when considering the long-term trend, the B-band flux level is related to the R-band one according to a power law of index ∼1.1. Doppler factor variations on a “convex” spectrum could be the mechanism accounting for both the long-term variations and their slight chromatism.Reig Torres, Pablo, [email protected]

    Multiwavelength variability of BL Lacertae measured with high time resolution

    Full text link
    In an effort to locate the sites of emission at different frequencies and physical processes causing variability in blazar jets, we have obtained high time-resolution observations of BL Lacertae over a wide wavelength range: with the Transiting Exoplanet Survey Satellite (TESS) at 6000–10000 Å with 2 minute cadence; with the Neil Gehrels Swift satellite at optical, UV, and X-ray bands; with the Nuclear Spectroscopic Telescope Array at hard X-ray bands; with the Fermi Large Area Telescope at γ-ray energies; and with the Whole Earth Blazar Telescope for measurement of the optical flux density and polarization. All light curves are correlated, with similar structure on timescales from hours to days. The shortest timescale of variability at optical frequencies observed with TESS is ~0.5 hr. The most common timescale is 13 ± 1 hr, comparable with the minimum timescale of X-ray variability, 14.5 hr. The multiwavelength variability properties cannot be explained by a change solely in the Doppler factor of the emitting plasma. The polarization behavior implies that there are both ordered and turbulent components to the magnetic field in the jet. Correlation analysis indicates that the X-ray variations lag behind the γ-ray and optical light curves by up to ~0.4 day. The timescales of variability, cross-frequency lags, and polarization properties can be explained by turbulent plasma that is energized by a shock in the jet and subsequently loses energy to synchrotron and inverse Compton radiation in a magnetic field of strength ~3 G.Accepted manuscrip

    3C 279 Multiwavelength Monitoring II : The Ground-based Campaign

    No full text
    The optically violently variable quasar 3C 279 was monitored simultaneously from radio to y-ray frequencies in 1992 December-1993 January. We report a detailed study of the ground-based results from radio to optical wavelengths. These data show that 3C 279 has a typical blazar spectrum, slightly rising at radio frequency and then progressively steeper above a first turnover frequency between 37 and 90 GHz. In the millimeter wavelength region, a simple power law is not an adequate description of the spectrum. We suggest that the millimeter "shoulder" corresponds to an additional emission component, self-absorbed between 150 and 375 GHz, possibly associated with the detachment of a new VLBI knot and with the start of radio flare. A flux increase of 20% over 20 days was observed at 37 and 90 GHz, while contemporaneously the R-band flux doubled in about two weeks. The lack of strong variability in contemporaneous X-ray light curves (possible X-ray variations are less than 30%) implies no direct (i.e., zero lag) correlation between the optical and X-ray fluxes. If X-rays are produced by inverse-Compton scattering of relativistic electrons on some seed photons, the above results exclude that the observed optical photons are the seeds and/or that the relativistic electrons radiating via synchrotron in the optical band are responsible for the scattering to X-ray energies. We suggest that the X-rays are instead produced through the inverseCompton process by electrons of lower energy, which radiate via synchrotron in the radio to millimeter wave bands and which scatter either on the synchrotron photons themselves or on external photons.Peer reviewe

    The 1993 multiwavelength campaign on 3C 279 : the radio to gamma-ray energy distribution inlow state

    No full text
    Simultaneous observations of 3C 279 at radio, millimeter, near-infrared, optical, ultraviolet (with IUE) and X-ray (with ROSAT) wavelengths were obtained in 1992 December-1993 January, during a three week pointing at the source by the Compton Gamma Ray Observatory. The blazar was in a quiescent or 'low' state during this period. Comparing the multiwavelength energy distribution to that from 1991 June, when 3C 279 was in its brightest recorded gamma-ray state, we find the following: (1) 3C 279 faded dramatically at all frequencies above 1014 Hz, while the flux variations at low frequencies (radio to millimeter wavelengths) were minor. (2) The near-infrared-optical-ultraviolet spectral shape was softer (steeper) in the quiescent state, and the X-ray spectra also appear softer, although the spectral index measured by ROSAT refer to a lower energy band than that measured earlier with Ginga. (3) The ratio of the gamma-ray luminosity to that across all other frequencies decreased from a value of approximately equal to 10 in the flaring state to a value approximately equal to 1 in the quiescent state. These findings imply that the production of gamma-rays is closely related to the optical-ultraviolet continuum, in agreement with models where gamma-rays are produced through inverse Compton (IC) scattering by relativistic electrons emitting the synchrotron continuum. The observed nonlinear relation between the synchrotron and IC requires both a change in the electron spectrum and an associated change in the seed photons.Peer reviewe

    Multiwavelength Variability of BL Lacertae Measured with High Time Resolution

    No full text
    © 2020. The American Astronomical Society. All rights reserved.. In an effort to locate the sites of emission at different frequencies and physical processes causing variability in blazar jets, we have obtained high time-resolution observations of BL Lacertae over a wide wavelength range: with the Transiting Exoplanet Survey Satellite (TESS) at 6000-10000 Å with 2 minute cadence; with the Neil Gehrels Swift satellite at optical, UV, and X-ray bands; with the Nuclear Spectroscopic Telescope Array at hard X-ray bands; with the Fermi Large Area Telescope at γ-ray energies; and with the Whole Earth Blazar Telescope for measurement of the optical flux density and polarization. All light curves are correlated, with similar structure on timescales from hours to days. The shortest timescale of variability at optical frequencies observed with TESS is ∼0.5 hr. The most common timescale is 13 ± 1 hr, comparable with the minimum timescale of X-ray variability, 14.5 hr. The multiwavelength variability properties cannot be explained by a change solely in the Doppler factor of the emitting plasma. The polarization behavior implies that there are both ordered and turbulent components to the magnetic field in the jet. Correlation analysis indicates that the X-ray variations lag behind the γ-ray and optical light curves by up to ∼0.4 day. The timescales of variability, cross-frequency lags, and polarization properties can be explained by turbulent plasma that is energized by a shock in the jet and subsequently loses energy to synchrotron and inverse Compton radiation in a magnetic field of strength ∼3 G
    corecore