1,725 research outputs found
Optical cavities as amplitude filters for squeezed fields
We explore the use of Fabry-P\'erot cavities as high-pass filters for
squeezed light, and show that they can increase the sensitivity of
interferometric gravitational-wave detectors without the need for long
(kilometer scale) filter cavities. We derive the parameters for the filters,
and analyze the performance of several possible cavity configurations in the
context of a future gravitational-wave interferometer with squeezed light
(vacuum) injected into the output port.Comment: 9 pages, 6 figure
Conformal linear gravity in de Sitter space II
From the group theoretical point of view, it is proved that the theory of
linear conformal gravity should be written in terms of a tensor field of rank-3
and mixed symmetry [Binegar, et al, Phys. Rev. D 27, (1983) 2249]. We obtained
such a field equation in de Sitter space [Takook, et al, J. Math. Phys. 51,
(2010) 032503]. In this paper, a proper solution to this equation is obtained
as a product of a generalized polarization tensor and a massless scalar field
and then the conformally invariant two-point function is calculated. This
two-point function is de Sitter invariant and free of any pathological
large-distance behavior.Comment: 16 pages, no figure, published versio
Gravitons and Lightcone Fluctuations
Gravitons in a squeezed vacuum state, the natural result of quantum creation
in the early universe or by black holes, will introduce metric fluctuations.
These metric fluctuations will introduce fluctuations of the lightcone. It is
shown that when the various two-point functions of a quantized field are
averaged over the metric fluctuations, the lightcone singularity disappears for
distinct points. The metric averaged functions remain singular in the limit of
coincident points. The metric averaged retarded Green's function for a massless
field becomes a Gaussian which is nonzero both inside and outside of the
classical lightcone. This implies some photons propagate faster than the
classical light speed, whereas others propagate slower. The possible effects of
metric fluctuations upon one-loop quantum processes are discussed and
illustrated by the calculation of the one-loop electron self-energy.Comment: 18pp, LATEX, TUTP-94-1
Vibrational properties of amorphous silicon from tight-binding O(N) calculation
We present an O(N) algorithm to study the vibrational properties of amorphous
silicon within the framework of tight-binding approach. The dynamical matrix
elements have been evaluated numerically in the harmonic approximation
exploiting the short-range nature of the density matrix to calculate the
vibrational density of states which is then compared with the same obtained
from a standard O() algorithm. For the purpose of illustration, an
1000-atom model is studied to calculate the localization properties of the
vibrational eigenstates using the participation numbers calculation.Comment: 5 pages including 5 ps figures; added a figure and a few references;
accepted in Phys. Rev.
Adopting a blended approach to learning: experiences from radiography at Queen Margaret University, Edinburgh
The perspective of the radiography teaching team at Queen Margaret University (QMU) was that a transmission mode of programme delivery was sub-optimal in helping students to learn and make links between theory and practice. Programme redesign adopted a blended learning approach with both face-to-face and online learning aimed at enhancing the students’ control over their own learning. Online tasks within Web Classroom Tools (WebCT) were used as an integral part of careful programme design, which resulted in a programme enabling synthesis of the skills, knowledge and competencies acquired in the academic and clinical environments.
With the move towards a more learner-centred, blended educational experience for the students the lecturers’ role shifted to that of facilitator with WebCT providing the tutor with a more transparent view of student learning. Lecturers plan learning activities that build upon the skills students have developed through learning in groups, online and in class.
The explicit connections that now exist between the academic programme and the opportunities for applying knowledge in practice allow students to engage more deeply in their learning
Cosmic Microwave Background Anisotropies from Scaling Seeds: Global Defect Models
We investigate the global texture model of structure formation in cosmogonies
with non-zero cosmological constant for different values of the Hubble
parameter. We find that the absence of significant acoustic peaks and little
power on large scales are robust predictions of these models. However, from a
careful comparison with data we conclude that at present we cannot safely
reject the model on the grounds of present CMB data. Exclusion by means of
galaxy correlation data requires assumptions on biasing and statistics. New,
very stringent constraints come from peculiar velocities.
Investigating the large-N limit, we argue that our main conclusions apply to
all global O(N) models of structure formation.Comment: LaTeX file with RevTex, 27 pages, 23 eps figs., submitted to Phys.
Rev. D. A version with higher quality images can be found at
http://mykonos.unige.ch/~kunz/download/lam.tar.gz for the LaTeX archive and
at http://mykonos.unige.ch/~kunz/download/lam.ps.gz for the compiled
PostScript fil
Recommended from our members
Near-Earth asteroid sample return missions
The rate of discovery of new NEAs and the success of D-S 1 and NEAR-Shoemaker, suggest that sample return from NEAs is now technically feasible. Here we present a summary of a recent workshop on the topic
Cosmic Acceleration in Brans-Dicke Cosmology
We consider Brans-Dicke theory with a self-interacting potential in Einstein
conformal frame. We show that an accelerating expansion is possible in a
spatially flat universe for large values of the Brans-Dicke parameter
consistent with local gravity experiments.Comment: 10 Pages, 3 figures, To appear in General Relativity and Gravitatio
Non-Fermi liquid behavior and scaling of low frequency suppression in optical conductivity spectra of CaRuO
Optical conductivity spectra of paramagnetic CaRuO are
investigated at various temperatures. At T=10 K, it shows a non-Fermi liquid
behavior of , similar to the case
of a ferromagnet SrRuO. As the temperature () is increased, on the other
hand, in the low frequency region is progressively
suppressed, deviating from the 1/{\omega}^{\frac 12%}-dependence.
Interestingly, the suppression of is found to scale with
at all temperatures. The origin of the scaling
behavior coupled with the non-Fermi liquid behavior is discussed.Comment: 4 pages, 3 figure
- …
