1,562 research outputs found

    Quality of life in children and adolescents with Osteogenesis Imperfecta: a qualitative interview based study

    Get PDF
    BACKGROUND: Osteogenesis Imperfecta (OI) is a disease with varying severity affecting physical, social and emotional well-being of the child and their family. There is no existing evidence on how the OI population regard their quality of life (QoL). The main aim of this study was to determine how OI impacts on the quality of life and well-being of children and their family. It is the first stage of a larger project to develop a disease specific quality of life measure for children with OI. METHODS: Purposive sampling was used to cover the diversity of the OI population. Twenty-five qualitative interviews were undertaken with children (n = 10), parents (n = 10) and health professionals (n = 5). Interviews were digitally recorded and transcribed verbatim. Significant themes were identified, extracted and organised, undergoing framework analysis. RESULTS: Six main themes were identified; being safe and careful, reduced function, pain, fear, isolation, independence. There was a large amount of agreement between the three groups of interviewees, although discrepancies did occur between parents and children, with regard to the themes independence and fear. CONCLUSIONS: This data presents the first step in developing items for a disease specific QoL measure for children with OI. Several of the themes uncovered showed similarity to other QoL measures, but the addition of being safe and careful, particularly in relation to fractures, demonstrated the need for a disease specific measure for children with OI

    No Evidence Supporting Flare Driven High-Frequency Global Oscillations

    Full text link
    The underlying physics that generates the excitations in the global low-frequency, < 5.3 mHz, solar acoustic power spectrum is a well known process that is attributed to solar convection; However, a definitive explanation as to what causes excitations in the high-frequency regime, > 5.3 mHz, has yet to be found. Karoff and Kjeldsen (Astrophys. J. 678, 73-76, 2008) concluded that there is a correlation between solar flares and the global high-frequency solar acoustic waves. We have used the Global Oscillations Network Group (GONG) helioseismic data in an attempt to verify Karoff and Kjeldsen (2008) results as well as compare the post-flare acoustic power spectrum to the pre-flare acoustic power spectrum for 31 solar flares. Among the 31 flares analyzed, we observe that a decrease in acoustic power after the solar flare is just as likely as an increase. Furthermore, while we do observe variations in acoustic power that are most likely associated with the usual p-modes associated with solar convection, these variations do not show any significant temporal association with flares. We find no evidence that consistently supports flare driven high-frequency waves.Comment: 20 pages, 9 figures, Accepted for publication in Solar Physic

    Recent experimental results in sub- and near-barrier heavy ion fusion reactions

    Full text link
    Recent advances obtained in the field of near and sub-barrier heavy-ion fusion reactions are reviewed. Emphasis is given to the results obtained in the last decade, and focus will be mainly on the experimental work performed concerning the influence of transfer channels on fusion cross sections and the hindrance phenomenon far below the barrier. Indeed, early data of sub-barrier fusion taught us that cross sections may strongly depend on the low-energy collective modes of the colliding nuclei, and, possibly, on couplings to transfer channels. The coupled-channels (CC) model has been quite successful in the interpretation of the experimental evidences. Fusion barrier distributions often yield the fingerprint of the relevant coupled channels. Recent results obtained by using radioactive beams are reported. At deep sub-barrier energies, the slope of the excitation function in a semi-logarithmic plot keeps increasing in many cases and standard CC calculations over-predict the cross sections. This was named a hindrance phenomenon, and its physical origin is still a matter of debate. Recent theoretical developments suggest that this effect, at least partially, may be a consequence of the Pauli exclusion principle. The hindrance may have far-reaching consequences in astrophysics where fusion of light systems determines stellar evolution during the carbon and oxygen burning stages, and yields important information for exotic reactions that take place in the inner crust of accreting neutron stars.Comment: 40 pages, 63 figures, review paper accepted for EPJ

    Attitudes and practices in the laboratory monitoring of conventional synthetic disease modifying anti-rheumatic drugs by rheumatologists and rheumatology trainees

    Get PDF
    Published online: 17 October 2022Objectives: There is scant research about laboratory monitoring in people taking conventional synthetic diseasemodifying anti-rheumatic drugs (csDMARDs) for rheumatic disease. Our objective was to conduct a scoping study to assess the range of current attitudes and the variation in practice of laboratory monitoring of csDMARDs by rheumatologists and trainees. Methods: Australian and overseas rheumatologists or trainees were invited through newsletter, Twitter and personal e-mail, to complete an anonymous online survey between 1 February and 22 March 2021. Questions focused on laboratory tests requested by csDMARD prescribed, frequency/pattern of monitoring, influence of additional factors and combination therapy, actions in response to abnormal tests, and attitudes to monitoring frequencies. Results were presented descriptively and analysed using linear and logistic regression. Results: There were 221 valid responses. Most respondents were from Australia (n = 53, 35%) followed by the US (n = 39, 26%), with a slight preponderance of women (n = 84, 56%), ≥ 11 years in rheumatology practice (n = 83, 56%) and in mostly public practice (n = 79, 53%). Respondents had a wide variation in the frequency and scheduling of tests. In general, respondents reported increasing monitoring frequency if patients had numerous comorbidities or if both methotrexate and leflunomide were being taken concurrently. There was a wide variety of responses to abnormal monitoring results and 27 (40%) considered that in general, monitoring tests are performed too frequently. Conclusions: The results demonstrated a wide variation in the frequency of testing, factors that should influence this, and what responses to abnormal test results are appropriate, indicates a likely lack of evidence and the need to define the risks, benefits and costs of different csDMARD monitoring regimens.James J. Tsakas, David F. L. Liew, Cameron L. Adams, Catherine L. Hill, Susanna Proudman, Samuel Whittle, Rachelle Buchbinder, and Philip C. Robinso

    Superradiation from Crystals of High-Spin Molecular Nanomagnets

    Full text link
    Phenomenological theory of superradiation from crystals of high-spin molecules is suggested. We show that radiation friction can cause a superradiation pulse and investigate the role of magnetic anisotropy, external magnetic field and dipole-dipole interactions. Depending on the contribution of all these factors at low temperature, several regimes of magnetization of crystal sample are described. Very fast switch of magnetization's direction for some sets of parameters is predicted.Comment: 10 pages, 3 figure

    Oscillations above the barrier in the fusion of 28Si + 28Si

    Get PDF
    Fusion cross sections of 28Si + 28Si have been measured in a range above the barrier with a very small energy step (DeltaElab = 0.5 MeV). Regular oscillations have been observed, best evidenced in the first derivative of the energy-weighted excitation function. For the first time, quite different behaviors (the appearance of oscillations and the trend of sub-barrier cross sections) have been reproduced within the same theoretical frame, i.e., the coupled-channel model using the shallow M3Y+repulsion potential. The calculations suggest that channel couplings play an important role in the appearance of the oscillations, and that the simple relation between a peak in the derivative of the energy-weighted cross section and the height of a centrifugal barrier is lost, and so is the interpretation of the second derivative of the excitation function as a barrier distribution for this system, at energies above the Coulomb barrier.Comment: submitted to Physics Letters

    Interpreting Helioseismic Structure Inversion Results of Solar Active Regions

    Full text link
    Helioseismic techniques such as ring-diagram analysis have often been used to determine the subsurface structural differences between solar active and quiet regions. Results obtained by inverting the frequency differences between the regions are usually interpreted as the sound-speed differences between them. These in turn are used as a measure of temperature and magnetic-field strength differences between the two regions. In this paper we first show that the "sound-speed" difference obtained from inversions is actually a combination of sound-speed difference and a magnetic component. Hence, the inversion result is not directly related to the thermal structure. Next, using solar models that include magnetic fields, we develop a formulation to use the inversion results to infer the differences in the magnetic and thermal structures between active and quiet regions. We then apply our technique to existing structure inversion results for different pairs of active and quiet regions. We find that the effect of magnetic fields is strongest in a shallow region above 0.985R_sun and that the strengths of magnetic-field effects at the surface and in the deeper (r < 0.98R_sun) layers are inversely related, i.e., the stronger the surface magnetic field the smaller the magnetic effects in the deeper layers, and vice versa. We also find that the magnetic effects in the deeper layers are the strongest in the quiet regions, consistent with the fact that these are basically regions with weakest magnetic fields at the surface. Because the quiet regions were selected to precede or follow their companion active regions, the results could have implications about the evolution of magnetic fields under active regions.Comment: Accepted for publication in Solar Physic

    Mayer and virial series at low temperature

    Get PDF
    We analyze the Mayer pressure-activity and virial pressure-density series for a classical system of particles in continuous configuration space at low temperature. Particles interact via a finite range potential with an attractive tail. We propose physical interpretations of the Mayer and virial series' radius of convergence, valid independently of the question of phase transition: the Mayer radius corresponds to a fast increase from very small to finite density, and the virial radius corresponds to a cross-over from monatomic to polyatomic gas. Our results have consequences for the search of a low density, low temperature solid-gas phase transition, consistent with the Lee-Yang theorem for lattice gases and with the continuum Widom-Rowlinson model.Comment: 36 pages, 1 figur

    Multipartite entangled coherent states

    Full text link
    We propose a scheme for generating multipartite entangled coherent states via entanglement swapping, with an example of a physical realization in ion traps. Bipartite entanglement of these multipartite states is quantified by the concurrence. We also use the NN--tangle to compute multipartite entanglement for certain systems. Finally we establish that these results for entanglement can be applied to more general multipartite entangled nonorthogonal states.Comment: 7 pages, two figures. We added more detail discussions on the generation of multipartite entangled coherent states and multipartite entangelemen
    • …
    corecore