The underlying physics that generates the excitations in the global
low-frequency, < 5.3 mHz, solar acoustic power spectrum is a well known process
that is attributed to solar convection; However, a definitive explanation as to
what causes excitations in the high-frequency regime, > 5.3 mHz, has yet to be
found. Karoff and Kjeldsen (Astrophys. J. 678, 73-76, 2008) concluded that
there is a correlation between solar flares and the global high-frequency solar
acoustic waves. We have used the Global Oscillations Network Group (GONG)
helioseismic data in an attempt to verify Karoff and Kjeldsen (2008) results as
well as compare the post-flare acoustic power spectrum to the pre-flare
acoustic power spectrum for 31 solar flares. Among the 31 flares analyzed, we
observe that a decrease in acoustic power after the solar flare is just as
likely as an increase. Furthermore, while we do observe variations in acoustic
power that are most likely associated with the usual p-modes associated with
solar convection, these variations do not show any significant temporal
association with flares. We find no evidence that consistently supports flare
driven high-frequency waves.Comment: 20 pages, 9 figures, Accepted for publication in Solar Physic