1,030 research outputs found

    From On-Road to Off: Transfer Learning within a Deep Convolutional Neural Network for Segmentation and Classification of Off-Road Scenes

    Get PDF
    Real-time road-scene understanding is a challenging computer vision task with recent advances in convolutional neural networks (CNN) achieving results that notably surpass prior traditional feature driven approaches. Here, we take an existing CNN architecture, pre-trained for urban road-scene understanding, and retrain it towards the task of classifying off-road scenes, assessing the network performance within the training cycle. Within the paradigm of transfer learning we analyse the effects on CNN classification, by training and assessing varying levels of prior training on varying sub-sets of our off-road training data. For each of these configurations, we evaluate the network at multiple points during its training cycle, allowing us to analyse in depth exactly how the training process is affected by these variations. Finally, we compare this CNN to a more traditional approach using a feature-driven Support Vector Machine (SVM) classifier and demonstrate state-of-the-art results in this particularly challenging problem of off-road scene understanding

    Three-dimensional reconstruction of individual helical nano-filament structures from atomic force microscopy topographs

    Get PDF
    Atomic force microscopy, AFM, is a powerful tool that can produce detailed topographical images of individual nano-structures with a high signal-to-noise ratio without the need for ensemble averaging. However, the application of AFM in structural biology has been hampered by the tip-sample convolution effect, which distorts images of nano-structures, particularly those that are of similar dimensions to the cantilever probe tips used in AFM. Here we show that the tip-sample convolution results in a feature-dependent and non-uniform distribution of image resolution on AFM topographs. We show how this effect can be utilised in structural studies of nano-sized upward convex objects such as spherical or filamentous molecular assemblies deposited on a flat surface, because it causes ‘magnification’ of such objects in AFM topographs. Subsequently, this enhancement effect is harnessed through contact-point based deconvolution of AFM topographs. Here, the application of this approach is demonstrated through the 3D reconstruction of the surface envelope of individual helical amyloid filaments without the need of cross-particle averaging using the contact- deconvoluted AFM topographs. Resolving the structural variations of individual macromolecular assemblies within inherently heterogeneous populations is paramount for mechanistic understanding of many biological phenomena such as amyloid toxicity and prion strains. The approach presented here will also facilitate the use of AFM for high-resolution structural studies and integrative structural biology analysis of single molecular assemblies

    Methylation profiling and evaluation of demethylating therapy in renal cell carcinoma.

    Get PDF
    BACKGROUND: Despite therapeutic advances in targeted therapy, metastatic renal cell carcinoma (RCC) remains incurable for the vast majority of patients. Key molecular events in the pathogenesis of RCC include inactivation of the VHL tumour suppressor gene (TSG), inactivation of chromosome 3p TSGs implicated in chromatin modification and remodelling and de novo tumour-specific promoter methylation of renal TSGs. In the light of these observations it can be proposed that, as in some haematological malignancies, demethylating agents such as azacitidine might be beneficial for the treatment of advanced RCC. RESULTS: Here we report that the treatment of RCC cell lines with azacitidine suppressed cell proliferation in all 15 lines tested. A marked response to azacitidine therapy (>50% reduction in colony formation assay) was detected in the three cell lines with VHL promoter methylation but some RCC cell lines without VHL TSG methylation also demonstrated a similar response suggesting that multiple methylated TSGs might determine the response to demethylating therapies. To identify novel candidate methylated TSGs implicated in RCC we undertook a combined analysis of copy number and CpG methylation array data. Candidate novel epigenetically inactivated TSGs were further prioritised by expression analysis of RCC cell lines pre and post-azacitidine therapy and comparative expression analysis of tumour/normal pairs. Thus, with subsequent investigation two candidate genes were found to be methylated in more than 25% of our series and in the TCGA methylation dataset for 199 RCC samples: RGS7 (25.6% and 35.2% of tumours respectively) and NEFM in (25.6% and 30.2%). In addition three candidate genes were methylated in >10% of both datasets (TMEM74 (15.4% and 14.6%), GCM2 (41.0% and 14.6%) and AEBP1 (30.8% and 13.1%)). Methylation of GCM2 (P = 0.0324), NEFM (P = 0.0024) and RGS7 (P = 0.0067) was associated with prognosis. CONCLUSIONS: These findings provide preclinical evidence that treatment with demethylating agents such as azacitidine might be useful for the treatment of advanced RCC and further insights into the role of epigenetic changes in the pathogenesis of RCC

    ac Josephson effect in the resonant tunneling through mesoscopic superconducting junctions

    Full text link
    We investigate ac Josephson effect in the resonant tunneling through mesoscopic superconducting junctions. In the presence of microwave irradiation, we show that the trajectory of multiple Andreev reflections can be closed by emitting or absorbing photons. Consequently, photon-assisted Andreev states are formed and play the role of carrying supercurrent. On the Shapiro steps, dc component appears when the resonant level is near a series of positions with spacing of half of the microwave frequency. Analytical result is derived in the limit of infinite superconducting gap, based on which new features of ac Josephson effect are revealed.Comment: 11 pages, 3 figure

    Revisit of the Interaction between Holographic Dark Energy and Dark Matter

    Full text link
    In this paper we investigate the possible direct, non-gravitational interaction between holographic dark energy (HDE) and dark matter. Firstly, we start with two simple models with the interaction terms Q∝ρdmQ \propto \rho_{dm} and Q∝ρdeQ \propto \rho_{de}, and then we move on to the general form Q∝ρmαρdeÎČQ \propto \rho_m^\alpha\rho_{de}^\beta. The cosmological constraints of the models are obtained from the joint analysis of the present Union2.1+BAO+CMB+H0H_0 data. We find that the data slightly favor an energy flow from dark matter to dark energy, although the original HDE model still lies in the 95.4% confidence level (CL) region. For all models we find c<1c<1 at the 95.4% CL. We show that compared with the cosmic expansion, the effect of interaction on the evolution of ρdm\rho_{dm} and ρde\rho_{de} is smaller, and the relative increment (decrement) amount of the energy in the dark matter component is constrained to be less than 9% (15%) at the 95.4% CL. By introducing the interaction, we find that even when c<1c<1 the big rip still can be avoided due to the existence of a de Sitter solution at z→−1z\rightarrow-1. We show that this solution can not be accomplished in the two simple models, while for the general model such a solution can be achieved with a large ÎČ\beta, and the big rip may be avoided at the 95.4% CL.Comment: 26 pages, 9 figures, version accepted for publication in JCA

    Comparison of s- and d-wave gap symmetry in nonequilibrium superconductivity

    Full text link
    Recent application of ultrafast pump/probe optical techniques to superconductors has renewed interest in nonequilibrium superconductivity and the predictions that would be available for novel superconductors, such as the high-Tc cuprates. We have reexamined two of the classical models which have been used in the past to interpret nonequilibrium experiments with some success: the mu* model of Owen and Scalapino and the T* model of Parker. Predictions depend on pairing symmetry. For instance, the gap suppression due to excess quasiparticle density n in the mu* model, varies as n^{3/2} in d-wave as opposed to n for s-wave. Finally, we consider these models in the context of S-I-N tunneling and optical excitation experiments. While we confirm that recent pump/probe experiments in YBCO, as presently interpreted, are in conflict with d-wave pairing, we refute the further claim that they agree with s-wave.Comment: 14 pages, 11 figure

    Light-cone QCD Sum Rules for the Λ\Lambda Baryon Electromagnetic Form Factors and its magnetic moment

    Full text link
    We present the light-cone QCD sum rules up to twist 6 for the electromagnetic form factors of the Λ\Lambda baryon. To estimate the magnetic moment of the baryon, the magnetic form factor is fitted by the dipole formula. The numerical value of our estimation is ΌΛ=−(0.64±0.04)ÎŒN\mu_\Lambda=-(0.64\pm0.04)\mu_N, which is in accordance with the experimental data and the existing theoretical results. We find that it is twist 4 but not the leading twist distribution amplitudes that dominate the results.Comment: 13 page, 7 figures, accepted for publication in Euro. Phys. J.

    MicroRNAs: Novel Regulators Involved in the Pathogenesis of Psoriasis?

    Get PDF
    MicroRNAs are a recently discovered class of posttranscriptional regulators of gene expression with critical functions in health and disease. Psoriasis is the most prevalent chronic inflammatory skin disease in adults, with a substantial negative impact on the patients' quality of life. Here we show for the first time that psoriasis-affected skin has a specific microRNA expression profile when compared with healthy human skin or with another chronic inflammatory skin disease, atopic eczema. Among the psoriasis-specific microRNAs, we identified leukocyte-derived microRNAs and one keratinocyte-derived microRNA, miR-203. In a panel of 21 different human organs and tissues, miR-203 showed a highly skin-specific expression profile. Among the cellular constituents of the skin, it was exclusively expressed by keratinocytes. The up-regulation of miR-203 in psoriatic plaques was concurrent with the down-regulation of an evolutionary conserved target of miR-203, suppressor of cytokine signaling 3 (SOCS-3), which is involved in inflammatory responses and keratinocyte functions. Our results suggest that microRNA deregulation is involved in the pathogenesis of psoriasis and contributes to the dysfunction of the cross talk between resident and infiltrating cells. Taken together, a new layer of regulatory mechanisms is involved in the pathogenesis of chronic inflammatory skin diseases

    Electrochemical capacitance of a leaky nano-capacitor

    Get PDF
    We report a detailed theoretical investigation on electrochemical capacitance of a nanoscale capacitor where there is a DC coupling between the two conductors. For this ``leaky'' quantum capacitor, we have derived general analytic expressions of the linear and second order nonlinear electrochemical capacitance within a first principles quantum theory in the discrete potential approximation. Linear and nonlinear capacitance coefficients are also derived in a self-consistent manner without the latter approximation and the self-consistent analysis is suitable for numerical calculations. At linear order, the full quantum formula improves the semiclassical analysis in the tunneling regime. At nonlinear order which has not been studied before for leaky capacitors, the nonlinear capacitance and nonlinear nonequilibrium charge show interesting behavior. Our theory allows the investigation of crossover of capacitance from a full quantum to classical regimes as the distance between the two conductors is changed

    Andreev reflections in the pseudogap state of cuprate supercondcutors

    Full text link
    We propose that, if the pseudogap state in the cuprate superconductors can be described in terms of the phase-incoherent preformed pairs, there should exist Andreev reflection from these pairs even above the superconducting transition temperature, TcT_c. After giving qualitative arguments for this effect, we present more quantitative calculations based on the Bogoliubov--de Gennes equation. Experimental observations of the effects of Andreev reflections above TcT_c---such as an enhanced tunneling conductance below the gap along the copper oxide plane---could provide unambiguous evidence for the preformed pairs in the pseudogap state.Comment: 5 pages, 1 figur
    • 

    corecore